Reduction of structure to parabolic subgroups
Documenta mathematica, Tome 27 (2022), pp. 1421-1446 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Let G be an affine group over a field of characteristic not two. A G-torsor is called isotropic if it admits reduction of structure to a proper parabolic subgroup of G. This definition generalizes isotropy of affine groups and involutions of central simple algebras. When does G admit anisotropic torsors? Building on work of J. Tits, we answer this question for simple groups. We also give an answer for connected and semisimple G under certain restrictions on its root system.
DOI : 10.4171/dm/901
Classification : 11E39, 11E72, 16W10, 20G07, 20G15
Mots-clés : Galois cohomology, algebraic geometry, rings and algebras
@article{10_4171_dm_901,
     author = {Danny Ofek},
     title = {Reduction of structure to parabolic subgroups},
     journal = {Documenta mathematica},
     pages = {1421--1446},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/901},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/901/}
}
TY  - JOUR
AU  - Danny Ofek
TI  - Reduction of structure to parabolic subgroups
JO  - Documenta mathematica
PY  - 2022
SP  - 1421
EP  - 1446
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/901/
DO  - 10.4171/dm/901
ID  - 10_4171_dm_901
ER  - 
%0 Journal Article
%A Danny Ofek
%T Reduction of structure to parabolic subgroups
%J Documenta mathematica
%D 2022
%P 1421-1446
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/901/
%R 10.4171/dm/901
%F 10_4171_dm_901
Danny Ofek. Reduction of structure to parabolic subgroups. Documenta mathematica, Tome 27 (2022), pp. 1421-1446. doi: 10.4171/dm/901

Cité par Sources :