Higher weak (co)limits, adjoint functor theorems, and higher Brown representability
Documenta mathematica, Tome 27 (2022), pp. 1369-1420
Cet article a éte moissonné depuis la source EMS Press
We prove general adjoint functor theorems for weakly (co)complete n-categories. This class of n-categories includes the homotopy n-categories of (co)complete ∞-categories, so these n-categories do not admit all small (co)limits in general. We also introduce Brown representability for (homotopy) n-categories and prove a Brown representability theorem for localizations of compactly generated n-categories. This class of n-categories includes the homotopy n-categories of presentable ∞-categories if n≥2, and the homotopy n-categories of presentable stable ∞-categories for any n≥1.
Classification :
18G80, 18N60, 55P99, 55U35
Mots-clés : adjoint functor theorem, Brown representability, higher categories
Mots-clés : adjoint functor theorem, Brown representability, higher categories
@article{10_4171_dm_900,
author = {Hoang Kim Nguyen and George Raptis and Christoph Schrade},
title = {Higher weak (co)limits, adjoint functor theorems, and higher {Brown} representability},
journal = {Documenta mathematica},
pages = {1369--1420},
year = {2022},
volume = {27},
doi = {10.4171/dm/900},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/900/}
}
TY - JOUR AU - Hoang Kim Nguyen AU - George Raptis AU - Christoph Schrade TI - Higher weak (co)limits, adjoint functor theorems, and higher Brown representability JO - Documenta mathematica PY - 2022 SP - 1369 EP - 1420 VL - 27 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/900/ DO - 10.4171/dm/900 ID - 10_4171_dm_900 ER -
%0 Journal Article %A Hoang Kim Nguyen %A George Raptis %A Christoph Schrade %T Higher weak (co)limits, adjoint functor theorems, and higher Brown representability %J Documenta mathematica %D 2022 %P 1369-1420 %V 27 %U http://geodesic.mathdoc.fr/articles/10.4171/dm/900/ %R 10.4171/dm/900 %F 10_4171_dm_900
Hoang Kim Nguyen; George Raptis; Christoph Schrade. Higher weak (co)limits, adjoint functor theorems, and higher Brown representability. Documenta mathematica, Tome 27 (2022), pp. 1369-1420. doi: 10.4171/dm/900
Cité par Sources :