Complex free spectrahedra, absolute extreme points, and dilations
Documenta mathematica, Tome 27 (2022), pp. 1275-1297 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Evert and Helton proved that real free spectrahedra are the matrix convex hulls of their absolute extreme points. However, this result does not extend to complex free spectrahedra, and we examine multiple ways in which the analogous result can fail. We also develop some local techniques to determine when matrix convex sets are not (duals of) free spectrahedra, as part of a continued study of minimal and maximal matrix convex sets and operator systems. These results apply to both the real and complex cases.
DOI : 10.4171/dm/897
Classification : 46L07, 47A13, 47A20, 47L25
Mots-clés : dilation, matrix convex set, abstract operator system, matrix range
@article{10_4171_dm_897,
     author = {Benjamin Passer},
     title = {Complex free spectrahedra, absolute extreme points, and dilations},
     journal = {Documenta mathematica},
     pages = {1275--1297},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/897},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/897/}
}
TY  - JOUR
AU  - Benjamin Passer
TI  - Complex free spectrahedra, absolute extreme points, and dilations
JO  - Documenta mathematica
PY  - 2022
SP  - 1275
EP  - 1297
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/897/
DO  - 10.4171/dm/897
ID  - 10_4171_dm_897
ER  - 
%0 Journal Article
%A Benjamin Passer
%T Complex free spectrahedra, absolute extreme points, and dilations
%J Documenta mathematica
%D 2022
%P 1275-1297
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/897/
%R 10.4171/dm/897
%F 10_4171_dm_897
Benjamin Passer. Complex free spectrahedra, absolute extreme points, and dilations. Documenta mathematica, Tome 27 (2022), pp. 1275-1297. doi: 10.4171/dm/897

Cité par Sources :