Ricci DeTurck flow on incomplete manifolds
Documenta mathematica, Tome 27 (2022), pp. 1169-1212 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

In this paper we construct a Ricci DeTurck flow on any incomplete Riemannian manifold with bounded curvature. The central property of the flow is that it stays uniformly equivalent to the initial incomplete Riemannian metric, and in that sense preserves any given initial singularity structure. Together with the corresponding result by W.-X. Shi for complete manifolds [J. Differ. Geom. 30, No. 1, 223–301 (1989; Zbl 0676.53044)], this gives that any (complete or incomplete) manifold of bounded curvature can be evolved by the Ricci DeTurck flow for a short time.
DOI : 10.4171/dm/894
Classification : 53C20, 53E20
Mots-clés : Ricci flow, incomplete manifolds, initial singularity structure
@article{10_4171_dm_894,
     author = {Tobias Marxen and Boris Vertman},
     title = {Ricci {DeTurck} flow on incomplete manifolds},
     journal = {Documenta mathematica},
     pages = {1169--1212},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/894},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/894/}
}
TY  - JOUR
AU  - Tobias Marxen
AU  - Boris Vertman
TI  - Ricci DeTurck flow on incomplete manifolds
JO  - Documenta mathematica
PY  - 2022
SP  - 1169
EP  - 1212
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/894/
DO  - 10.4171/dm/894
ID  - 10_4171_dm_894
ER  - 
%0 Journal Article
%A Tobias Marxen
%A Boris Vertman
%T Ricci DeTurck flow on incomplete manifolds
%J Documenta mathematica
%D 2022
%P 1169-1212
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/894/
%R 10.4171/dm/894
%F 10_4171_dm_894
Tobias Marxen; Boris Vertman. Ricci DeTurck flow on incomplete manifolds. Documenta mathematica, Tome 27 (2022), pp. 1169-1212. doi: 10.4171/dm/894

Cité par Sources :