Flat cotorsion modules over Noether algebras
Documenta mathematica, Tome 27 (2022), pp. 1101-1167
Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

For a module-finite algebra over a commutative noetherian ring, we give a complete description of flat cotorsion modules in terms of prime ideals of the algebra, as a generalization of Enochs' result for a commutative noetherian ring. As a consequence, we show that pointwise Matlis duality gives a bijective correspondence between the isoclasses of indecomposable injective left modules and the isoclasses of indecomposable flat cotorsion right modules. This correspondence is an explicit realization of Herzog's homeomorphism induced from elementary duality of Ziegler spectra.
DOI : 10.4171/dm/893
Classification : 13B35, 16D40, 16D70, 16G30
Mots-clés : flat cotorsion module, Noether algebra, pure-injective module, Ziegler spectrum, elementary duality, ideal-adic completion
@article{10_4171_dm_893,
     author = {Tsutomu Nakamura and Ryo Kanda},
     title = {Flat cotorsion modules over {Noether} algebras},
     journal = {Documenta mathematica},
     pages = {1101--1167},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/893},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/893/}
}
TY  - JOUR
AU  - Tsutomu Nakamura
AU  - Ryo Kanda
TI  - Flat cotorsion modules over Noether algebras
JO  - Documenta mathematica
PY  - 2022
SP  - 1101
EP  - 1167
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/893/
DO  - 10.4171/dm/893
ID  - 10_4171_dm_893
ER  - 
%0 Journal Article
%A Tsutomu Nakamura
%A Ryo Kanda
%T Flat cotorsion modules over Noether algebras
%J Documenta mathematica
%D 2022
%P 1101-1167
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/893/
%R 10.4171/dm/893
%F 10_4171_dm_893
Tsutomu Nakamura; Ryo Kanda. Flat cotorsion modules over Noether algebras. Documenta mathematica, Tome 27 (2022), pp. 1101-1167. doi: 10.4171/dm/893

Cité par Sources :