An index formula for groups of isometric linear canonical transformations
Documenta mathematica, Tome 27 (2022), pp. 983-1013 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We define a representation of the unitary group U(n) by metaplectic operators acting on L2(Rn) and consider the operator algebra generated by the operators of the representation and pseudodifferential operators of Shubin class. Under suitable conditions, we prove the Fredholm property for elements in this algebra and obtain an index formula.
DOI : 10.4171/dm/890
Classification : 19K56, 58J20, 58J40
Mots-clés : Index theory, Shubin class pseudodifferential operators ;metaplectic operators
@article{10_4171_dm_890,
     author = {Anton Savin and Elmar Schrohe},
     title = {An index formula for groups of isometric linear canonical transformations},
     journal = {Documenta mathematica},
     pages = {983--1013},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/890},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/890/}
}
TY  - JOUR
AU  - Anton Savin
AU  - Elmar Schrohe
TI  - An index formula for groups of isometric linear canonical transformations
JO  - Documenta mathematica
PY  - 2022
SP  - 983
EP  - 1013
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/890/
DO  - 10.4171/dm/890
ID  - 10_4171_dm_890
ER  - 
%0 Journal Article
%A Anton Savin
%A Elmar Schrohe
%T An index formula for groups of isometric linear canonical transformations
%J Documenta mathematica
%D 2022
%P 983-1013
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/890/
%R 10.4171/dm/890
%F 10_4171_dm_890
Anton Savin; Elmar Schrohe. An index formula for groups of isometric linear canonical transformations. Documenta mathematica, Tome 27 (2022), pp. 983-1013. doi: 10.4171/dm/890

Cité par Sources :