Global stable splittings of Stiefel manifolds
Documenta mathematica, Tome 27 (2022), pp. 789-845 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We prove global equivariant refinements of Miller's stable splittings of the infinite orthogonal, unitary and symplectic groups, and more generally of the spaces O/O(m),U/U(m) and Sp/Sp(m). As such, our results encode compatible equivariant stable splittings, for all compact Lie groups, of specific equivariant refinements of these spaces.
DOI : 10.4171/dm/885
Classification : 55N91, 55P91
Mots-clés : global homotopy theory, stable splitting, Stiefel manifold
@article{10_4171_dm_885,
     author = {Stefan Schwede},
     title = {Global stable splittings of {Stiefel} manifolds},
     journal = {Documenta mathematica},
     pages = {789--845},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/885},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/885/}
}
TY  - JOUR
AU  - Stefan Schwede
TI  - Global stable splittings of Stiefel manifolds
JO  - Documenta mathematica
PY  - 2022
SP  - 789
EP  - 845
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/885/
DO  - 10.4171/dm/885
ID  - 10_4171_dm_885
ER  - 
%0 Journal Article
%A Stefan Schwede
%T Global stable splittings of Stiefel manifolds
%J Documenta mathematica
%D 2022
%P 789-845
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/885/
%R 10.4171/dm/885
%F 10_4171_dm_885
Stefan Schwede. Global stable splittings of Stiefel manifolds. Documenta mathematica, Tome 27 (2022), pp. 789-845. doi: 10.4171/dm/885

Cité par Sources :