Polynomial approximation of quantum Lipschitz functions
Documenta mathematica, Tome 27 (2022), pp. 765-787
Cet article a éte moissonné depuis la source EMS Press
We prove an approximation result for Lipschitz functions on the quantum sphere Sq2, from which we deduce that the two natural quantum metric structures on Sq2 have quantum Gromov-Hausdorff distance zero.
Classification :
46L30, 46L89, 81R15, 81R60
Mots-clés : spectral triples, quantum metric spaces, fuzzy spheres, Podleś sphere, Berezin transform, quantum Gromov-Hausdorff distance
Mots-clés : spectral triples, quantum metric spaces, fuzzy spheres, Podleś sphere, Berezin transform, quantum Gromov-Hausdorff distance
@article{10_4171_dm_884,
author = {Konrad Aguilar and Jens Kaad and David Kyed},
title = {Polynomial approximation of quantum {Lipschitz} functions},
journal = {Documenta mathematica},
pages = {765--787},
year = {2022},
volume = {27},
doi = {10.4171/dm/884},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/884/}
}
Konrad Aguilar; Jens Kaad; David Kyed. Polynomial approximation of quantum Lipschitz functions. Documenta mathematica, Tome 27 (2022), pp. 765-787. doi: 10.4171/dm/884
Cité par Sources :