Polynomial approximation of quantum Lipschitz functions
Documenta mathematica, Tome 27 (2022), pp. 765-787 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We prove an approximation result for Lipschitz functions on the quantum sphere Sq2​, from which we deduce that the two natural quantum metric structures on Sq2​ have quantum Gromov-Hausdorff distance zero.
DOI : 10.4171/dm/884
Classification : 46L30, 46L89, 81R15, 81R60
Mots-clés : spectral triples, quantum metric spaces, fuzzy spheres, Podleś sphere, Berezin transform, quantum Gromov-Hausdorff distance
@article{10_4171_dm_884,
     author = {Konrad Aguilar and Jens Kaad and David Kyed},
     title = {Polynomial approximation of quantum {Lipschitz} functions},
     journal = {Documenta mathematica},
     pages = {765--787},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/884},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/884/}
}
TY  - JOUR
AU  - Konrad Aguilar
AU  - Jens Kaad
AU  - David Kyed
TI  - Polynomial approximation of quantum Lipschitz functions
JO  - Documenta mathematica
PY  - 2022
SP  - 765
EP  - 787
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/884/
DO  - 10.4171/dm/884
ID  - 10_4171_dm_884
ER  - 
%0 Journal Article
%A Konrad Aguilar
%A Jens Kaad
%A David Kyed
%T Polynomial approximation of quantum Lipschitz functions
%J Documenta mathematica
%D 2022
%P 765-787
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/884/
%R 10.4171/dm/884
%F 10_4171_dm_884
Konrad Aguilar; Jens Kaad; David Kyed. Polynomial approximation of quantum Lipschitz functions. Documenta mathematica, Tome 27 (2022), pp. 765-787. doi: 10.4171/dm/884

Cité par Sources :