Spectral theory of regular sequences
Documenta mathematica, Tome 27 (2022), pp. 629-653 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Regular sequences are natural generalisations of fixed points of constant-length substitutions on finite alphabets, that is, of automatic sequences. Using the harmonic analysis of measures associated with substitutions as motivation, we study the limiting asymptotics of regular sequences by constructing a systematic measure-theoretic framework surrounding them. The constructed measures are generalisations of mass distributions supported on attractors of iterated function systems.
DOI : 10.4171/dm/880
Classification : 11B85, 28A80, 42A38
Mots-clés : aperiodic order, symbolic dynamics, regular sequences, continuous measures, dilation equations
@article{10_4171_dm_880,
     author = {Michael Coons and James Evans and Neil Ma\~nibo},
     title = {Spectral theory of regular sequences},
     journal = {Documenta mathematica},
     pages = {629--653},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/880},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/880/}
}
TY  - JOUR
AU  - Michael Coons
AU  - James Evans
AU  - Neil Mañibo
TI  - Spectral theory of regular sequences
JO  - Documenta mathematica
PY  - 2022
SP  - 629
EP  - 653
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/880/
DO  - 10.4171/dm/880
ID  - 10_4171_dm_880
ER  - 
%0 Journal Article
%A Michael Coons
%A James Evans
%A Neil Mañibo
%T Spectral theory of regular sequences
%J Documenta mathematica
%D 2022
%P 629-653
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/880/
%R 10.4171/dm/880
%F 10_4171_dm_880
Michael Coons; James Evans; Neil Mañibo. Spectral theory of regular sequences. Documenta mathematica, Tome 27 (2022), pp. 629-653. doi: 10.4171/dm/880

Cité par Sources :