An isovariant Elmendorf's theorem
Documenta mathematica, Tome 27 (2022), pp. 613-628 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

An isovariant map between spaces with a group action is an equivariant map which preserves isotropy groups. In this paper, we show that for a finite group G, the category of G-spaces with isovariant maps has a Quillen model structure. We prove a Piacenza-style model theoretic proof of an isovariant Elmendorf's theorem, showing that this model structure is Quillen equivalent to a model category of diagrams.
DOI : 10.4171/dm/879
Classification : 55P91
Mots-clés : isovariant, model categories
@article{10_4171_dm_879,
     author = {Sarah Yeakel},
     title = {An isovariant {Elmendorf's} theorem},
     journal = {Documenta mathematica},
     pages = {613--628},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/879},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/879/}
}
TY  - JOUR
AU  - Sarah Yeakel
TI  - An isovariant Elmendorf's theorem
JO  - Documenta mathematica
PY  - 2022
SP  - 613
EP  - 628
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/879/
DO  - 10.4171/dm/879
ID  - 10_4171_dm_879
ER  - 
%0 Journal Article
%A Sarah Yeakel
%T An isovariant Elmendorf's theorem
%J Documenta mathematica
%D 2022
%P 613-628
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/879/
%R 10.4171/dm/879
%F 10_4171_dm_879
Sarah Yeakel. An isovariant Elmendorf's theorem. Documenta mathematica, Tome 27 (2022), pp. 613-628. doi: 10.4171/dm/879

Cité par Sources :