Rank inequalities for the Heegaard Floer homology of branched covers
Documenta mathematica, Tome 27 (2022), pp. 581-612 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We show that if L is a nullhomologous link in a 3-manifold Y and Σ(Y,L) is a double cover of Y branched along L then for each spinc-structure s on Y there is an inequality
DOI : 10.4171/dm/878
Classification : 57M12, 57R58
Mots-clés : Heegaard Floer homology, double branched cover
@article{10_4171_dm_878,
     author = {Kristen Hendricks and Tye Lidman and Robert Lipshitz},
     title = {Rank inequalities for the {Heegaard} {Floer} homology of branched covers},
     journal = {Documenta mathematica},
     pages = {581--612},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/878},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/878/}
}
TY  - JOUR
AU  - Kristen Hendricks
AU  - Tye Lidman
AU  - Robert Lipshitz
TI  - Rank inequalities for the Heegaard Floer homology of branched covers
JO  - Documenta mathematica
PY  - 2022
SP  - 581
EP  - 612
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/878/
DO  - 10.4171/dm/878
ID  - 10_4171_dm_878
ER  - 
%0 Journal Article
%A Kristen Hendricks
%A Tye Lidman
%A Robert Lipshitz
%T Rank inequalities for the Heegaard Floer homology of branched covers
%J Documenta mathematica
%D 2022
%P 581-612
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/878/
%R 10.4171/dm/878
%F 10_4171_dm_878
Kristen Hendricks; Tye Lidman; Robert Lipshitz. Rank inequalities for the Heegaard Floer homology of branched covers. Documenta mathematica, Tome 27 (2022), pp. 581-612. doi: 10.4171/dm/878

Cité par Sources :