The universal de Rham / Spencer double complex on a supermanifold
Documenta mathematica, Tome 27 (2022), pp. 489-518 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

The universal Spencer and de Rham complexes of sheaves over a smooth or analytical manifold are well known to play a basic role in the theory of D-modules. In this article we consider a double complex of sheaves generalizing both complexes for an arbitrary supermanifold, and we use it to unify the notions of differential and integral forms on real, complex and algebraic supermanifolds. The associated spectral sequences give the de Rham complex of differential forms and the complex of integral forms at page one. For real and complex supermanifolds both spectral sequences converge at page two to the locally constant sheaf. We use this fact to show that the cohomology of differential forms is isomorphic to the cohomology of integral forms, and they both compute the de Rham cohomology of the reduced manifold. Furthermore, we show that, in contrast with the case of ordinary complex manifolds, the Hodge-to-de Rham (or Frölicher) spectral sequence of supermanifolds with Kähler reduced manifold does not converge in general at page one.
DOI : 10.4171/dm/875
Classification : 14F10, 14F40, 58A50
Mots-clés : D-modules, universal de Rham complex, supergeometry
@article{10_4171_dm_875,
     author = {Simone Noja and Sergio Luigi Cacciatori and Riccardo Re},
     title = {The universal de {Rham} / {Spencer} double complex on a supermanifold},
     journal = {Documenta mathematica},
     pages = {489--518},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/875},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/875/}
}
TY  - JOUR
AU  - Simone Noja
AU  - Sergio Luigi Cacciatori
AU  - Riccardo Re
TI  - The universal de Rham / Spencer double complex on a supermanifold
JO  - Documenta mathematica
PY  - 2022
SP  - 489
EP  - 518
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/875/
DO  - 10.4171/dm/875
ID  - 10_4171_dm_875
ER  - 
%0 Journal Article
%A Simone Noja
%A Sergio Luigi Cacciatori
%A Riccardo Re
%T The universal de Rham / Spencer double complex on a supermanifold
%J Documenta mathematica
%D 2022
%P 489-518
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/875/
%R 10.4171/dm/875
%F 10_4171_dm_875
Simone Noja; Sergio Luigi Cacciatori; Riccardo Re. The universal de Rham / Spencer double complex on a supermanifold. Documenta mathematica, Tome 27 (2022), pp. 489-518. doi: 10.4171/dm/875

Cité par Sources :