Additive decompositions for rings of modular forms
Documenta mathematica, Tome 27 (2022), pp. 427-488 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We study rings of integral modular forms for congruence subgroups as modules over the ring of integral modular forms for SL2​Z. In many cases these modules are free or decompose at least into well-understood pieces. We apply this to characterize which rings of modular forms are Cohen-Macaulay and to prove finite generation results. These theorems are based on decomposition results about vector bundles on the compactified moduli stack of elliptic curves.
DOI : 10.4171/dm/874
Classification : 11F11, 14D23
Mots-clés : modular forms, moduli stacks of elliptic curves, Cohen-Macaulay
@article{10_4171_dm_874,
     author = {Lennart Meier},
     title = {Additive decompositions for rings of modular forms},
     journal = {Documenta mathematica},
     pages = {427--488},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/874},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/874/}
}
TY  - JOUR
AU  - Lennart Meier
TI  - Additive decompositions for rings of modular forms
JO  - Documenta mathematica
PY  - 2022
SP  - 427
EP  - 488
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/874/
DO  - 10.4171/dm/874
ID  - 10_4171_dm_874
ER  - 
%0 Journal Article
%A Lennart Meier
%T Additive decompositions for rings of modular forms
%J Documenta mathematica
%D 2022
%P 427-488
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/874/
%R 10.4171/dm/874
%F 10_4171_dm_874
Lennart Meier. Additive decompositions for rings of modular forms. Documenta mathematica, Tome 27 (2022), pp. 427-488. doi: 10.4171/dm/874

Cité par Sources :