An infinitesimal variant of the Guo-Jacquet trace formula. I: The case of $(\mathrm{GL}_{2n, D}, \mathrm{GL}_{n, D}\times \mathrm{GL}_{n, D})$
Documenta mathematica, Tome 27 (2022), pp. 315-381
Cet article a éte moissonné depuis la source EMS Press
We establish an infinitesimal variant of Guo-Jacquet trace formula for the case of (GL2n,D,GLn,D×GLn,D). It is a kind of Poisson summation formula obtained by an analogue of Arthur's truncation process. It consists in the equality of the sums of two types of distributions which are non-equivariant in general: one type is associated to rational points in the categorical quotient, while the other type is the Fourier transform of the first type. For regular semi-simple points in the categorical quotient, we obtain weighted orbital integrals.
Classification :
11F70, 11F72, 20G35
Mots-clés : Guo-Jacquet trace formula, Arthur's truncation
Mots-clés : Guo-Jacquet trace formula, Arthur's truncation
@article{10_4171_dm_872,
author = {Huajie Li},
title = {An infinitesimal variant of the {Guo-Jacquet} trace formula. {I:} {The} case of $(\mathrm{GL}_{2n, D}, \mathrm{GL}_{n, D}\times \mathrm{GL}_{n, D})$},
journal = {Documenta mathematica},
pages = {315--381},
year = {2022},
volume = {27},
doi = {10.4171/dm/872},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/872/}
}
TY - JOUR
AU - Huajie Li
TI - An infinitesimal variant of the Guo-Jacquet trace formula. I: The case of $(\mathrm{GL}_{2n, D}, \mathrm{GL}_{n, D}\times \mathrm{GL}_{n, D})$
JO - Documenta mathematica
PY - 2022
SP - 315
EP - 381
VL - 27
UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/872/
DO - 10.4171/dm/872
ID - 10_4171_dm_872
ER -
%0 Journal Article
%A Huajie Li
%T An infinitesimal variant of the Guo-Jacquet trace formula. I: The case of $(\mathrm{GL}_{2n, D}, \mathrm{GL}_{n, D}\times \mathrm{GL}_{n, D})$
%J Documenta mathematica
%D 2022
%P 315-381
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/872/
%R 10.4171/dm/872
%F 10_4171_dm_872
Huajie Li. An infinitesimal variant of the Guo-Jacquet trace formula. I: The case of $(\mathrm{GL}_{2n, D}, \mathrm{GL}_{n, D}\times \mathrm{GL}_{n, D})$. Documenta mathematica, Tome 27 (2022), pp. 315-381. doi: 10.4171/dm/872
Cité par Sources :