Canonical $\beta$-extensions
Documenta mathematica, Tome 27 (2022), pp. 295-313 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We compare the level zero part of the type of a representation of GL(n) over a local non-archimedean field with the tame part of its Langlands parameter restricted to inertia. By normalizing this comparison, we construct canonical β-extensions of maximal simple characters.
DOI : 10.4171/dm/871
Classification : 11S37, 22E50
Mots-clés : local Langlands correspondence, type theory, beta-extensions
@article{10_4171_dm_871,
     author = {Andrea Dotto},
     title = {Canonical $\beta$-extensions},
     journal = {Documenta mathematica},
     pages = {295--313},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/871},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/871/}
}
TY  - JOUR
AU  - Andrea Dotto
TI  - Canonical $\beta$-extensions
JO  - Documenta mathematica
PY  - 2022
SP  - 295
EP  - 313
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/871/
DO  - 10.4171/dm/871
ID  - 10_4171_dm_871
ER  - 
%0 Journal Article
%A Andrea Dotto
%T Canonical $\beta$-extensions
%J Documenta mathematica
%D 2022
%P 295-313
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/871/
%R 10.4171/dm/871
%F 10_4171_dm_871
Andrea Dotto. Canonical $\beta$-extensions. Documenta mathematica, Tome 27 (2022), pp. 295-313. doi: 10.4171/dm/871

Cité par Sources :