Families of coherent PEL automorphic forms
Documenta mathematica, Tome 27 (2022), pp. 213-294 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

In this article we give a construction of eigenvarieties by geometrically interpolating coherent automorphic sheaves of (PEL) Shimura varieties and their global sections. The new feature is that we particularly study the case of an empty ordinary locus, and thus use a replacement of the canonical subgroup in this situation. We specifically take into account the case of small primes and use this particular construction at a specific endoscopic point to prove new cases of the Bloch-Kato conjecture for characters of an imaginary quadratic field.
DOI : 10.4171/dm/870
Classification : 11F33, 11F55, 11G18, 11G40, 14G22, 14G35, 14K10, 14L05
Mots-clés : Shimura varieties, p-divisible groups, eigenvarieties, automorphic forms, Bloch-Kato conjecture
@article{10_4171_dm_870,
     author = {Valentin Hernandez},
     title = {Families of coherent {PEL} automorphic forms},
     journal = {Documenta mathematica},
     pages = {213--294},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/870},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/870/}
}
TY  - JOUR
AU  - Valentin Hernandez
TI  - Families of coherent PEL automorphic forms
JO  - Documenta mathematica
PY  - 2022
SP  - 213
EP  - 294
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/870/
DO  - 10.4171/dm/870
ID  - 10_4171_dm_870
ER  - 
%0 Journal Article
%A Valentin Hernandez
%T Families of coherent PEL automorphic forms
%J Documenta mathematica
%D 2022
%P 213-294
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/870/
%R 10.4171/dm/870
%F 10_4171_dm_870
Valentin Hernandez. Families of coherent PEL automorphic forms. Documenta mathematica, Tome 27 (2022), pp. 213-294. doi: 10.4171/dm/870

Cité par Sources :