Homotopy groups of highly connected Poincaré duality complexes
Documenta mathematica, Tome 27 (2022), pp. 183-211 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Methods are developed to relate the action of a principal fibration to relative Whitehead products in order to determine the homotopy type of certain spaces. The methods are applied to thoroughly analyze the homotopy type of the based loops on certain cell attachments. Key examples are (n−1)-connected Poincaré Duality complexes of dimension 2n or 2n+1 with minor cohomological conditions.
DOI : 10.4171/dm/869
Classification : 55P35, 55Q15, 57N65
Mots-clés : principal fibration, Whitehead product, loop space decomposition, Poincaré duality complex
@article{10_4171_dm_869,
     author = {Piotr Beben and Stephen Theriault},
     title = {Homotopy groups of highly connected {Poincar\'e} duality complexes},
     journal = {Documenta mathematica},
     pages = {183--211},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/869},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/869/}
}
TY  - JOUR
AU  - Piotr Beben
AU  - Stephen Theriault
TI  - Homotopy groups of highly connected Poincaré duality complexes
JO  - Documenta mathematica
PY  - 2022
SP  - 183
EP  - 211
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/869/
DO  - 10.4171/dm/869
ID  - 10_4171_dm_869
ER  - 
%0 Journal Article
%A Piotr Beben
%A Stephen Theriault
%T Homotopy groups of highly connected Poincaré duality complexes
%J Documenta mathematica
%D 2022
%P 183-211
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/869/
%R 10.4171/dm/869
%F 10_4171_dm_869
Piotr Beben; Stephen Theriault. Homotopy groups of highly connected Poincaré duality complexes. Documenta mathematica, Tome 27 (2022), pp. 183-211. doi: 10.4171/dm/869

Cité par Sources :