Arithmetic statistics and noncommutative Iwasawa theory
Documenta mathematica, Tome 27 (2022), pp. 89-149
Cet article a éte moissonné depuis la source EMS Press
Let p be an odd prime. Associated to a pair (E,F∞) consisting of a rational elliptic curve E and a p-adic Lie extension F∞ of Q, is the p-primary Selmer group Selp∞(E/F∞) of E over F∞. In this paper, we study the arithmetic statistics for the algebraic structure of this Selmer group. The results provide insights into the asymptotics for the growth of Mordell-Weil ranks of elliptic curves in noncommutative towers.
Classification :
11G05, 11R23
Mots-clés : Selmer groups, Euler characteristics, arithmetic statistics, noncommutative Iwasawa theory, Akashi series, growth of Mordell-Weil ranks
Mots-clés : Selmer groups, Euler characteristics, arithmetic statistics, noncommutative Iwasawa theory, Akashi series, growth of Mordell-Weil ranks
@article{10_4171_dm_867,
author = {Debanjana Kundu and Anwesh Ray and Antonio Lei},
title = {Arithmetic statistics and noncommutative {Iwasawa} theory},
journal = {Documenta mathematica},
pages = {89--149},
year = {2022},
volume = {27},
doi = {10.4171/dm/867},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/867/}
}
Debanjana Kundu; Anwesh Ray; Antonio Lei. Arithmetic statistics and noncommutative Iwasawa theory. Documenta mathematica, Tome 27 (2022), pp. 89-149. doi: 10.4171/dm/867
Cité par Sources :