Representation stability and outer automorphism groups
Documenta mathematica, Tome 27 (2022), pp. 17-87
Cet article a éte moissonné depuis la source EMS Press
In this paper we study families of representations of the outer automorphism groups indexed on a collection of finite groups U. We encode this large amount of data into a convenient abelian category which generalizes the category of VI-modules appearing in the representation theory of the finite general linear groups. Inspired by work of T. Church et al. [Duke Math. J. 164, No. 9, 1833–1910 (2015; Zbl 1339.55004)], we investigate for which choices of U the abelian category is locally noetherian and deduce analogues of central stability and representation stability results in this setting. Finally, we show that some invariants coming from rational global homotopy theory exhibit representation stability.
Classification :
05E10, 18A99, 20C99, 20J05
Mots-clés : representation stability, local Noetherian abelian categories, rational global spectra
Mots-clés : representation stability, local Noetherian abelian categories, rational global spectra
@article{10_4171_dm_866,
author = {Luca Pol and Neil Patrick Strickland},
title = {Representation stability and outer automorphism groups},
journal = {Documenta mathematica},
pages = {17--87},
year = {2022},
volume = {27},
doi = {10.4171/dm/866},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/866/}
}
Luca Pol; Neil Patrick Strickland. Representation stability and outer automorphism groups. Documenta mathematica, Tome 27 (2022), pp. 17-87. doi: 10.4171/dm/866
Cité par Sources :