On boundedness of semistable sheaves
Documenta mathematica, Tome 27 (2022), pp. 1-16 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We give a new simple proof of boundedness of the family of semistable sheaves with fixed numerical invariants on a fixed smooth projective variety. In characteristic zero our method gives a quick proof of Bogomolov's inequality for semistable sheaves on a smooth projective variety of any dimension ≥2 without using any restriction theorems.
DOI : 10.4171/dm/865
Classification : 14D20, 14F06, 14J60
Mots-clés : semistable sheaves, Bogomolov's inequality, bounded families
@article{10_4171_dm_865,
     author = {Adrian Langer},
     title = {On boundedness of semistable sheaves},
     journal = {Documenta mathematica},
     pages = {1--16},
     year = {2022},
     volume = {27},
     doi = {10.4171/dm/865},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/865/}
}
TY  - JOUR
AU  - Adrian Langer
TI  - On boundedness of semistable sheaves
JO  - Documenta mathematica
PY  - 2022
SP  - 1
EP  - 16
VL  - 27
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/865/
DO  - 10.4171/dm/865
ID  - 10_4171_dm_865
ER  - 
%0 Journal Article
%A Adrian Langer
%T On boundedness of semistable sheaves
%J Documenta mathematica
%D 2022
%P 1-16
%V 27
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/865/
%R 10.4171/dm/865
%F 10_4171_dm_865
Adrian Langer. On boundedness of semistable sheaves. Documenta mathematica, Tome 27 (2022), pp. 1-16. doi: 10.4171/dm/865

Cité par Sources :