Virtual equivariant Grothendieck-Riemann-Roch formula
Documenta mathematica, Tome 26 (2021), pp. 2061-2094 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

For a G-scheme X with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of B. Fantechi and L. Göttsche [Geom. Topol. 14, No. 1, 83–115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over C with proper actions.
DOI : 10.4171/dm/864
Classification : 14C15, 14C40, 14L30, 19L47
Mots-clés : equivariant Chow groups, Riemann-Roch theorems, equivariant K-theory
@article{10_4171_dm_864,
     author = {Charanya Ravi and Bhamidi Sreedhar},
     title = {Virtual equivariant {Grothendieck-Riemann-Roch} formula},
     journal = {Documenta mathematica},
     pages = {2061--2094},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/864},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/864/}
}
TY  - JOUR
AU  - Charanya Ravi
AU  - Bhamidi Sreedhar
TI  - Virtual equivariant Grothendieck-Riemann-Roch formula
JO  - Documenta mathematica
PY  - 2021
SP  - 2061
EP  - 2094
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/864/
DO  - 10.4171/dm/864
ID  - 10_4171_dm_864
ER  - 
%0 Journal Article
%A Charanya Ravi
%A Bhamidi Sreedhar
%T Virtual equivariant Grothendieck-Riemann-Roch formula
%J Documenta mathematica
%D 2021
%P 2061-2094
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/864/
%R 10.4171/dm/864
%F 10_4171_dm_864
Charanya Ravi; Bhamidi Sreedhar. Virtual equivariant Grothendieck-Riemann-Roch formula. Documenta mathematica, Tome 26 (2021), pp. 2061-2094. doi: 10.4171/dm/864

Cité par Sources :