Intermediate extensions and crystalline distribution algebras
Documenta mathematica, Tome 26 (2021), pp. 2005-2059 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Let G be a connected split reductive group over a complete discrete valuation ring of mixed characteristic. We use the theory of intermediate extensions due to Abe-Caro and arithmetic Beilinson-Bernstein localization to classify irreducible modules over the crystalline distribution algebra of G in terms of overconvergent isocrystals on locally closed subspaces in the flag variety of G. We treat the case of SL2​ as an example.
DOI : 10.4171/dm/863
Classification : 11F70, 14F10, 14F30, 14G20
Mots-clés : arithmetic differential operators, intermediate extensions, crystalline distributions
@article{10_4171_dm_863,
     author = {Christine Huyghe and Tobias Schmidt},
     title = {Intermediate extensions and crystalline distribution algebras},
     journal = {Documenta mathematica},
     pages = {2005--2059},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/863},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/863/}
}
TY  - JOUR
AU  - Christine Huyghe
AU  - Tobias Schmidt
TI  - Intermediate extensions and crystalline distribution algebras
JO  - Documenta mathematica
PY  - 2021
SP  - 2005
EP  - 2059
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/863/
DO  - 10.4171/dm/863
ID  - 10_4171_dm_863
ER  - 
%0 Journal Article
%A Christine Huyghe
%A Tobias Schmidt
%T Intermediate extensions and crystalline distribution algebras
%J Documenta mathematica
%D 2021
%P 2005-2059
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/863/
%R 10.4171/dm/863
%F 10_4171_dm_863
Christine Huyghe; Tobias Schmidt. Intermediate extensions and crystalline distribution algebras. Documenta mathematica, Tome 26 (2021), pp. 2005-2059. doi: 10.4171/dm/863

Cité par Sources :