Intermediate extensions and crystalline distribution algebras
Documenta mathematica, Tome 26 (2021), pp. 2005-2059
Cet article a éte moissonné depuis la source EMS Press
Let G be a connected split reductive group over a complete discrete valuation ring of mixed characteristic. We use the theory of intermediate extensions due to Abe-Caro and arithmetic Beilinson-Bernstein localization to classify irreducible modules over the crystalline distribution algebra of G in terms of overconvergent isocrystals on locally closed subspaces in the flag variety of G. We treat the case of SL2 as an example.
Classification :
11F70, 14F10, 14F30, 14G20
Mots-clés : arithmetic differential operators, intermediate extensions, crystalline distributions
Mots-clés : arithmetic differential operators, intermediate extensions, crystalline distributions
@article{10_4171_dm_863,
author = {Christine Huyghe and Tobias Schmidt},
title = {Intermediate extensions and crystalline distribution algebras},
journal = {Documenta mathematica},
pages = {2005--2059},
year = {2021},
volume = {26},
doi = {10.4171/dm/863},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/863/}
}
Christine Huyghe; Tobias Schmidt. Intermediate extensions and crystalline distribution algebras. Documenta mathematica, Tome 26 (2021), pp. 2005-2059. doi: 10.4171/dm/863
Cité par Sources :