On the reductions of certain two-dimensional crystalline representations
Documenta mathematica, Tome 26 (2021), pp. 1929-1979 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

The question of computing the reductions modulo p of two-dimensional crystalline p-adic Galois representations has been studied extensively, and partial progress has been made for representations that have small weights, very small slopes, or very large slopes. It was conjectured by Breuil, Buzzard, and Emerton that these reductions are irreducible if they have even weight and non-integer slope. We prove some instances of this conjecture for slopes up to 2p−1​.
DOI : 10.4171/dm/861
Classification : 11S20
Mots-clés : irreducible, crystalline, residual, Langlands, slopes
@article{10_4171_dm_861,
     author = {Bodan Arsovski},
     title = {On the reductions of certain two-dimensional crystalline representations},
     journal = {Documenta mathematica},
     pages = {1929--1979},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/861},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/861/}
}
TY  - JOUR
AU  - Bodan Arsovski
TI  - On the reductions of certain two-dimensional crystalline representations
JO  - Documenta mathematica
PY  - 2021
SP  - 1929
EP  - 1979
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/861/
DO  - 10.4171/dm/861
ID  - 10_4171_dm_861
ER  - 
%0 Journal Article
%A Bodan Arsovski
%T On the reductions of certain two-dimensional crystalline representations
%J Documenta mathematica
%D 2021
%P 1929-1979
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/861/
%R 10.4171/dm/861
%F 10_4171_dm_861
Bodan Arsovski. On the reductions of certain two-dimensional crystalline representations. Documenta mathematica, Tome 26 (2021), pp. 1929-1979. doi: 10.4171/dm/861

Cité par Sources :