The maximal discrete extension of the Hermitian modular group
Documenta mathematica, Tome 26 (2021), pp. 1871-1888
Cet article a éte moissonné depuis la source EMS Press
Let Γn(OK) denote the Hermitian modular group of degree n over an imaginary-quadratic number field K. In this paper we determine its maximal discrete extension in SU(n,n;C), which coincides with the normalizer of Γn(OK). The description involves the n-torsion subgroup of the ideal class group of K. This group is defined over a particular number field Kn and we can describe the ramified primes in it. In the case n=2 we give an explicit description, which involves generalized Atkin-Lehner involutions. Moreover we find a natural characterization of this group in SO(2,4).
Classification :
11F06, 11F55
Mots-clés : Hermitian modular group, normalizer, maximal discrete extension, Atkin-Lehner involution, orthogonal group
Mots-clés : Hermitian modular group, normalizer, maximal discrete extension, Atkin-Lehner involution, orthogonal group
@article{10_4171_dm_859,
author = {Aloys Krieg and Martin Raum and Annalena Wernz},
title = {The maximal discrete extension of the {Hermitian} modular group},
journal = {Documenta mathematica},
pages = {1871--1888},
year = {2021},
volume = {26},
doi = {10.4171/dm/859},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/859/}
}
Aloys Krieg; Martin Raum; Annalena Wernz. The maximal discrete extension of the Hermitian modular group. Documenta mathematica, Tome 26 (2021), pp. 1871-1888. doi: 10.4171/dm/859
Cité par Sources :