The maximal discrete extension of the Hermitian modular group
Documenta mathematica, Tome 26 (2021), pp. 1871-1888 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Let Γn​(OK​) denote the Hermitian modular group of degree n over an imaginary-quadratic number field K. In this paper we determine its maximal discrete extension in SU(n,n;C), which coincides with the normalizer of Γn​(OK​). The description involves the n-torsion subgroup of the ideal class group of K. This group is defined over a particular number field Kn​ and we can describe the ramified primes in it. In the case n=2 we give an explicit description, which involves generalized Atkin-Lehner involutions. Moreover we find a natural characterization of this group in SO(2,4).
DOI : 10.4171/dm/859
Classification : 11F06, 11F55
Mots-clés : Hermitian modular group, normalizer, maximal discrete extension, Atkin-Lehner involution, orthogonal group
@article{10_4171_dm_859,
     author = {Aloys Krieg and Martin Raum and Annalena Wernz},
     title = {The maximal discrete extension of the {Hermitian} modular group},
     journal = {Documenta mathematica},
     pages = {1871--1888},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/859},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/859/}
}
TY  - JOUR
AU  - Aloys Krieg
AU  - Martin Raum
AU  - Annalena Wernz
TI  - The maximal discrete extension of the Hermitian modular group
JO  - Documenta mathematica
PY  - 2021
SP  - 1871
EP  - 1888
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/859/
DO  - 10.4171/dm/859
ID  - 10_4171_dm_859
ER  - 
%0 Journal Article
%A Aloys Krieg
%A Martin Raum
%A Annalena Wernz
%T The maximal discrete extension of the Hermitian modular group
%J Documenta mathematica
%D 2021
%P 1871-1888
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/859/
%R 10.4171/dm/859
%F 10_4171_dm_859
Aloys Krieg; Martin Raum; Annalena Wernz. The maximal discrete extension of the Hermitian modular group. Documenta mathematica, Tome 26 (2021), pp. 1871-1888. doi: 10.4171/dm/859

Cité par Sources :