Universally defining finitely generated subrings of global fields
Documenta mathematica, Tome 26 (2021), pp. 1851-1869 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

It is shown that any finitely generated subring of a global field has a universal first-order definition in its fraction field. This covers Koenigsmann's result for the ring of integers and its subsequent extensions to rings of integers in number fields and rings of S-integers in global function fields of odd characteristic. In this article a proof is presented which is uniform in all global fields, including the characteristic two case, where the result is entirely novel. Furthermore, the proposed method results in universal formulae requiring significantly fewer quantifiers than the formulae that can be derived through the previous approaches.
DOI : 10.4171/dm/858
Classification : 11R52, 11U99
Mots-clés : quaternion algebra, Diophantine set, definability, Hilbert 10th problem
@article{10_4171_dm_858,
     author = {Nicolas Daans},
     title = {Universally defining finitely generated subrings of global fields},
     journal = {Documenta mathematica},
     pages = {1851--1869},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/858},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/858/}
}
TY  - JOUR
AU  - Nicolas Daans
TI  - Universally defining finitely generated subrings of global fields
JO  - Documenta mathematica
PY  - 2021
SP  - 1851
EP  - 1869
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/858/
DO  - 10.4171/dm/858
ID  - 10_4171_dm_858
ER  - 
%0 Journal Article
%A Nicolas Daans
%T Universally defining finitely generated subrings of global fields
%J Documenta mathematica
%D 2021
%P 1851-1869
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/858/
%R 10.4171/dm/858
%F 10_4171_dm_858
Nicolas Daans. Universally defining finitely generated subrings of global fields. Documenta mathematica, Tome 26 (2021), pp. 1851-1869. doi: 10.4171/dm/858

Cité par Sources :