On a torsion analogue of the weight-monodromy conjecture
Documenta mathematica, Tome 26 (2021), pp. 1729-1770
Cet article a éte moissonné depuis la source EMS Press
We formulate and study a torsion analogue of the weight-monodromy conjecture for a proper smooth scheme over a non-archimedean local field. We prove it for proper smooth schemes over equal characteristic non-archimedean local fields, abelian varieties, surfaces, varieties uniformized by Drinfeld upper half spaces, and set-theoretic complete intersections in projective smooth toric varieties. In the equal characteristic case, our methods rely on an ultraproduct variant of Weil II established by Cadoret.
Classification :
11G25, 14C25, 14F20
Mots-clés : ultraproduct, weight-monodromy conjecture, weight spectral sequence
Mots-clés : ultraproduct, weight-monodromy conjecture, weight spectral sequence
@article{10_4171_dm_854,
author = {Kazuhiro Ito},
title = {On a torsion analogue of the weight-monodromy conjecture},
journal = {Documenta mathematica},
pages = {1729--1770},
year = {2021},
volume = {26},
doi = {10.4171/dm/854},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/854/}
}
Kazuhiro Ito. On a torsion analogue of the weight-monodromy conjecture. Documenta mathematica, Tome 26 (2021), pp. 1729-1770. doi: 10.4171/dm/854
Cité par Sources :