On a torsion analogue of the weight-monodromy conjecture
Documenta mathematica, Tome 26 (2021), pp. 1729-1770 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We formulate and study a torsion analogue of the weight-monodromy conjecture for a proper smooth scheme over a non-archimedean local field. We prove it for proper smooth schemes over equal characteristic non-archimedean local fields, abelian varieties, surfaces, varieties uniformized by Drinfeld upper half spaces, and set-theoretic complete intersections in projective smooth toric varieties. In the equal characteristic case, our methods rely on an ultraproduct variant of Weil II established by Cadoret.
DOI : 10.4171/dm/854
Classification : 11G25, 14C25, 14F20
Mots-clés : ultraproduct, weight-monodromy conjecture, weight spectral sequence
@article{10_4171_dm_854,
     author = {Kazuhiro Ito},
     title = {On a torsion analogue of the weight-monodromy conjecture},
     journal = {Documenta mathematica},
     pages = {1729--1770},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/854},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/854/}
}
TY  - JOUR
AU  - Kazuhiro Ito
TI  - On a torsion analogue of the weight-monodromy conjecture
JO  - Documenta mathematica
PY  - 2021
SP  - 1729
EP  - 1770
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/854/
DO  - 10.4171/dm/854
ID  - 10_4171_dm_854
ER  - 
%0 Journal Article
%A Kazuhiro Ito
%T On a torsion analogue of the weight-monodromy conjecture
%J Documenta mathematica
%D 2021
%P 1729-1770
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/854/
%R 10.4171/dm/854
%F 10_4171_dm_854
Kazuhiro Ito. On a torsion analogue of the weight-monodromy conjecture. Documenta mathematica, Tome 26 (2021), pp. 1729-1770. doi: 10.4171/dm/854

Cité par Sources :