Compatibility of special value conjectures with the functional equation of zeta functions
Documenta mathematica, Tome 26 (2021), pp. 1633-1677
Cet article a éte moissonné depuis la source EMS Press
We prove that the special value conjecture for the Zeta function ζ(X,s) of a proper, regular arithmetic scheme X that we formulated in [M. Flach and B. Morin, Doc. Math. 23, 1425–1560 (2018; Zbl 1404.14024)] is compatible with the functional equation of ζ(X,s) provided that the rational factor C(X,n) we were not able to compute previously has the simple explicit form given in the introduction below.
Classification :
11G40, 14F25, 14F40
Mots-clés : functional equation, Weil-étale cohomology, arithmetic schemes, zeta-values
Mots-clés : functional equation, Weil-étale cohomology, arithmetic schemes, zeta-values
@article{10_4171_dm_852,
author = {Baptiste Morin and Matthias Flach},
title = {Compatibility of special value conjectures with the functional equation of zeta functions},
journal = {Documenta mathematica},
pages = {1633--1677},
year = {2021},
volume = {26},
doi = {10.4171/dm/852},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/852/}
}
TY - JOUR AU - Baptiste Morin AU - Matthias Flach TI - Compatibility of special value conjectures with the functional equation of zeta functions JO - Documenta mathematica PY - 2021 SP - 1633 EP - 1677 VL - 26 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/852/ DO - 10.4171/dm/852 ID - 10_4171_dm_852 ER -
Baptiste Morin; Matthias Flach. Compatibility of special value conjectures with the functional equation of zeta functions. Documenta mathematica, Tome 26 (2021), pp. 1633-1677. doi: 10.4171/dm/852
Cité par Sources :