Bracket width of simple Lie algebras
Documenta mathematica, Tome 26 (2021), pp. 1601-1627 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

The notion of commutator width of a group, defined as the smallest number of commutators needed to represent each element of the derived group as their product, has been extensively studied over the past decades. In particular, in [Math. Ann. 294, No. 2, 235–265 (1992; Zbl 0894.55006)] J. Barge and E. Ghys discovered the first example of a simple group of commutator width greater than one among groups of diffeomorphisms of smooth manifolds.
DOI : 10.4171/dm/850
Classification : 14H52, 17B66
Mots-clés : simple Lie algebras, Lie algebras of algebraic, symplectic and Hamiltonian vector fields, smooth affine curves, Danielewski surfaces, locally nilpotent derivations
@article{10_4171_dm_850,
     author = {Andriy Regeta and Adrien Dubouloz and Boris Kunyavski\u{i}},
     title = {Bracket width of simple {Lie} algebras},
     journal = {Documenta mathematica},
     pages = {1601--1627},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/850},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/850/}
}
TY  - JOUR
AU  - Andriy Regeta
AU  - Adrien Dubouloz
AU  - Boris Kunyavskiĭ
TI  - Bracket width of simple Lie algebras
JO  - Documenta mathematica
PY  - 2021
SP  - 1601
EP  - 1627
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/850/
DO  - 10.4171/dm/850
ID  - 10_4171_dm_850
ER  - 
%0 Journal Article
%A Andriy Regeta
%A Adrien Dubouloz
%A Boris Kunyavskiĭ
%T Bracket width of simple Lie algebras
%J Documenta mathematica
%D 2021
%P 1601-1627
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/850/
%R 10.4171/dm/850
%F 10_4171_dm_850
Andriy Regeta; Adrien Dubouloz; Boris Kunyavskiĭ. Bracket width of simple Lie algebras. Documenta mathematica, Tome 26 (2021), pp. 1601-1627. doi: 10.4171/dm/850

Cité par Sources :