Bracket width of simple Lie algebras
Documenta mathematica, Tome 26 (2021), pp. 1601-1627
Cet article a éte moissonné depuis la source EMS Press
The notion of commutator width of a group, defined as the smallest number of commutators needed to represent each element of the derived group as their product, has been extensively studied over the past decades. In particular, in [Math. Ann. 294, No. 2, 235–265 (1992; Zbl 0894.55006)] J. Barge and E. Ghys discovered the first example of a simple group of commutator width greater than one among groups of diffeomorphisms of smooth manifolds.
Classification :
14H52, 17B66
Mots-clés : simple Lie algebras, Lie algebras of algebraic, symplectic and Hamiltonian vector fields, smooth affine curves, Danielewski surfaces, locally nilpotent derivations
Mots-clés : simple Lie algebras, Lie algebras of algebraic, symplectic and Hamiltonian vector fields, smooth affine curves, Danielewski surfaces, locally nilpotent derivations
@article{10_4171_dm_850,
author = {Andriy Regeta and Adrien Dubouloz and Boris Kunyavski\u{i}},
title = {Bracket width of simple {Lie} algebras},
journal = {Documenta mathematica},
pages = {1601--1627},
year = {2021},
volume = {26},
doi = {10.4171/dm/850},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/850/}
}
Andriy Regeta; Adrien Dubouloz; Boris Kunyavskiĭ. Bracket width of simple Lie algebras. Documenta mathematica, Tome 26 (2021), pp. 1601-1627. doi: 10.4171/dm/850
Cité par Sources :