Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties
Documenta mathematica, Tome 26 (2021), pp. 1465-1500 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

It is well known that the category of quasi-coherent sheaves on a gerbe banded by a diagonalizable group decomposes according to the characters of the group. We establish the corresponding decomposition of the unbounded derived category of complexes of sheaves with quasi-coherent cohomology. This generalizes earlier work by Lieblich for gerbes over schemes whereas our gerbes may live over arbitrary algebraic stacks.
DOI : 10.4171/dm/846
Classification : 14A20, 14F08
Mots-clés : derived category, gerbe, semi-orthogonal decomposition, algebraic stack, Brauer-Severi variety
@article{10_4171_dm_846,
     author = {Daniel Bergh and Olaf M. Schn\"urer},
     title = {Decompositions of derived categories of gerbes and of families of {Brauer-Severi} varieties},
     journal = {Documenta mathematica},
     pages = {1465--1500},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/846},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/846/}
}
TY  - JOUR
AU  - Daniel Bergh
AU  - Olaf M. Schnürer
TI  - Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties
JO  - Documenta mathematica
PY  - 2021
SP  - 1465
EP  - 1500
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/846/
DO  - 10.4171/dm/846
ID  - 10_4171_dm_846
ER  - 
%0 Journal Article
%A Daniel Bergh
%A Olaf M. Schnürer
%T Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties
%J Documenta mathematica
%D 2021
%P 1465-1500
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/846/
%R 10.4171/dm/846
%F 10_4171_dm_846
Daniel Bergh; Olaf M. Schnürer. Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties. Documenta mathematica, Tome 26 (2021), pp. 1465-1500. doi: 10.4171/dm/846

Cité par Sources :