Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties
Documenta mathematica, Tome 26 (2021), pp. 1465-1500
Cet article a éte moissonné depuis la source EMS Press
It is well known that the category of quasi-coherent sheaves on a gerbe banded by a diagonalizable group decomposes according to the characters of the group. We establish the corresponding decomposition of the unbounded derived category of complexes of sheaves with quasi-coherent cohomology. This generalizes earlier work by Lieblich for gerbes over schemes whereas our gerbes may live over arbitrary algebraic stacks.
Classification :
14A20, 14F08
Mots-clés : derived category, gerbe, semi-orthogonal decomposition, algebraic stack, Brauer-Severi variety
Mots-clés : derived category, gerbe, semi-orthogonal decomposition, algebraic stack, Brauer-Severi variety
@article{10_4171_dm_846,
author = {Daniel Bergh and Olaf M. Schn\"urer},
title = {Decompositions of derived categories of gerbes and of families of {Brauer-Severi} varieties},
journal = {Documenta mathematica},
pages = {1465--1500},
year = {2021},
volume = {26},
doi = {10.4171/dm/846},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/846/}
}
TY - JOUR AU - Daniel Bergh AU - Olaf M. Schnürer TI - Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties JO - Documenta mathematica PY - 2021 SP - 1465 EP - 1500 VL - 26 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/846/ DO - 10.4171/dm/846 ID - 10_4171_dm_846 ER -
Daniel Bergh; Olaf M. Schnürer. Decompositions of derived categories of gerbes and of families of Brauer-Severi varieties. Documenta mathematica, Tome 26 (2021), pp. 1465-1500. doi: 10.4171/dm/846
Cité par Sources :