Relations between infinitesimal non-commutative cumulants
Documenta mathematica, Tome 26 (2021), pp. 1145-1185
Cet article a éte moissonné depuis la source EMS Press
Boolean, free and monotone cumulants as well as relations among them, have proven to be important in the study of non-commutative probability theory. Quite notably, Boolean cumulants were successfully used to study free infinite divisibility via the Boolean Bercovici-Pata bijection. On the other hand, in recent years the concept of infinitesimal non-commutative probability has been developed, together with the notion of infinitesimal cumulants which can be useful in the context of combinatorial questions.
Classification :
16T05, 16T30, 46L53, 46L54
Mots-clés : Hopf algebra, infinitesimal non-commutative probability theory, infinitesimal cumulants, cumulant-cumulant relations
Mots-clés : Hopf algebra, infinitesimal non-commutative probability theory, infinitesimal cumulants, cumulant-cumulant relations
@article{10_4171_dm_838,
author = {Adri\'an Celestino and Daniel Perales and Kurusch Ebrahimi-Fard},
title = {Relations between infinitesimal non-commutative cumulants},
journal = {Documenta mathematica},
pages = {1145--1185},
year = {2021},
volume = {26},
doi = {10.4171/dm/838},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/838/}
}
TY - JOUR AU - Adrián Celestino AU - Daniel Perales AU - Kurusch Ebrahimi-Fard TI - Relations between infinitesimal non-commutative cumulants JO - Documenta mathematica PY - 2021 SP - 1145 EP - 1185 VL - 26 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/838/ DO - 10.4171/dm/838 ID - 10_4171_dm_838 ER -
Adrián Celestino; Daniel Perales; Kurusch Ebrahimi-Fard. Relations between infinitesimal non-commutative cumulants. Documenta mathematica, Tome 26 (2021), pp. 1145-1185. doi: 10.4171/dm/838
Cité par Sources :