Relations between infinitesimal non-commutative cumulants
Documenta mathematica, Tome 26 (2021), pp. 1145-1185 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Boolean, free and monotone cumulants as well as relations among them, have proven to be important in the study of non-commutative probability theory. Quite notably, Boolean cumulants were successfully used to study free infinite divisibility via the Boolean Bercovici-Pata bijection. On the other hand, in recent years the concept of infinitesimal non-commutative probability has been developed, together with the notion of infinitesimal cumulants which can be useful in the context of combinatorial questions.
DOI : 10.4171/dm/838
Classification : 16T05, 16T30, 46L53, 46L54
Mots-clés : Hopf algebra, infinitesimal non-commutative probability theory, infinitesimal cumulants, cumulant-cumulant relations
@article{10_4171_dm_838,
     author = {Adri\'an Celestino and Daniel Perales and Kurusch Ebrahimi-Fard},
     title = {Relations between infinitesimal non-commutative cumulants},
     journal = {Documenta mathematica},
     pages = {1145--1185},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/838},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/838/}
}
TY  - JOUR
AU  - Adrián Celestino
AU  - Daniel Perales
AU  - Kurusch Ebrahimi-Fard
TI  - Relations between infinitesimal non-commutative cumulants
JO  - Documenta mathematica
PY  - 2021
SP  - 1145
EP  - 1185
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/838/
DO  - 10.4171/dm/838
ID  - 10_4171_dm_838
ER  - 
%0 Journal Article
%A Adrián Celestino
%A Daniel Perales
%A Kurusch Ebrahimi-Fard
%T Relations between infinitesimal non-commutative cumulants
%J Documenta mathematica
%D 2021
%P 1145-1185
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/838/
%R 10.4171/dm/838
%F 10_4171_dm_838
Adrián Celestino; Daniel Perales; Kurusch Ebrahimi-Fard. Relations between infinitesimal non-commutative cumulants. Documenta mathematica, Tome 26 (2021), pp. 1145-1185. doi: 10.4171/dm/838

Cité par Sources :