Projective bundle theorem in MW-motivic cohomology
Documenta mathematica, Tome 26 (2021), pp. 1045-1083 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We present a version of projective bundle theorem in MW-motives (resp. Chow-Witt rings), which says that CH∗(P(E)) is determined by CH∗(X),CH∗(X,det(E)∨),CH∗(X) and Sq2 for smooth quasi-projective schemes X and vector bundles E over X with e(E∨)=0∈Hn(X,W(det(E))), provided that 2​CH∗(X)=0.
DOI : 10.4171/dm/835
Classification : 19, 11E81, 14F42
Mots-clés : MW-motivic cohomology, Chow-Witt ring, projective bundle theorem
@article{10_4171_dm_835,
     author = {Nanjun Yang},
     title = {Projective bundle theorem in {MW-motivic} cohomology},
     journal = {Documenta mathematica},
     pages = {1045--1083},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/835},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/835/}
}
TY  - JOUR
AU  - Nanjun Yang
TI  - Projective bundle theorem in MW-motivic cohomology
JO  - Documenta mathematica
PY  - 2021
SP  - 1045
EP  - 1083
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/835/
DO  - 10.4171/dm/835
ID  - 10_4171_dm_835
ER  - 
%0 Journal Article
%A Nanjun Yang
%T Projective bundle theorem in MW-motivic cohomology
%J Documenta mathematica
%D 2021
%P 1045-1083
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/835/
%R 10.4171/dm/835
%F 10_4171_dm_835
Nanjun Yang. Projective bundle theorem in MW-motivic cohomology. Documenta mathematica, Tome 26 (2021), pp. 1045-1083. doi: 10.4171/dm/835

Cité par Sources :