Local acyclicity in $p$-adic cohomology
Documenta mathematica, Tome 26 (2021), pp. 981-1044
Cet article a éte moissonné depuis la source EMS Press
We prove an analogue for p-adic coefficients of the Deligne-Laumon theorem on local acyclicity for curves. That is, for an overconvergent F-isocrystal E on a relative curve f:U→S admitting a good compactification, we show that the cohomology sheaves of Rf!E are overconvergent isocrystals if and only if E has constant Swan conductor at infinity.
Classification :
14F30, 14G22, 14G27
Mots-clés : p-adic cohomology, Swan conductors, overconvergent F-isocrystals
Mots-clés : p-adic cohomology, Swan conductors, overconvergent F-isocrystals
@article{10_4171_dm_834,
author = {Christopher Lazda},
title = {Local acyclicity in $p$-adic cohomology},
journal = {Documenta mathematica},
pages = {981--1044},
year = {2021},
volume = {26},
doi = {10.4171/dm/834},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/834/}
}
Christopher Lazda. Local acyclicity in $p$-adic cohomology. Documenta mathematica, Tome 26 (2021), pp. 981-1044. doi: 10.4171/dm/834
Cité par Sources :