Local acyclicity in $p$-adic cohomology
Documenta mathematica, Tome 26 (2021), pp. 981-1044 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We prove an analogue for p-adic coefficients of the Deligne-Laumon theorem on local acyclicity for curves. That is, for an overconvergent F-isocrystal E on a relative curve f:U→S admitting a good compactification, we show that the cohomology sheaves of Rf!​E are overconvergent isocrystals if and only if E has constant Swan conductor at infinity.
DOI : 10.4171/dm/834
Classification : 14F30, 14G22, 14G27
Mots-clés : p-adic cohomology, Swan conductors, overconvergent F-isocrystals
@article{10_4171_dm_834,
     author = {Christopher Lazda},
     title = {Local acyclicity in $p$-adic cohomology},
     journal = {Documenta mathematica},
     pages = {981--1044},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/834},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/834/}
}
TY  - JOUR
AU  - Christopher Lazda
TI  - Local acyclicity in $p$-adic cohomology
JO  - Documenta mathematica
PY  - 2021
SP  - 981
EP  - 1044
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/834/
DO  - 10.4171/dm/834
ID  - 10_4171_dm_834
ER  - 
%0 Journal Article
%A Christopher Lazda
%T Local acyclicity in $p$-adic cohomology
%J Documenta mathematica
%D 2021
%P 981-1044
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/834/
%R 10.4171/dm/834
%F 10_4171_dm_834
Christopher Lazda. Local acyclicity in $p$-adic cohomology. Documenta mathematica, Tome 26 (2021), pp. 981-1044. doi: 10.4171/dm/834

Cité par Sources :