Transfer maps in generalized group homology via submanifolds
Documenta mathematica, Tome 26 (2021), pp. 947-979 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Let N⊂M be a submanifold embedding of spin manifolds of some codimension k≥1. A classical result of Gromov and Lawson, refined by Hanke, Pape and Schick, states that M does not admit a metric of positive scalar curvature if k=2 and the Dirac operator of N has non-trivial index, provided that suitable geometric conditions on N⊂M are satisfied. In the cases k=1 and k=2, Zeidler and Kubota, respectively, established more systematic results: There exists a transfer KO∗​(C∗π1​M)→KO∗−k​(C∗π1​N) which maps the index class of M to the index class of N. The main goal of this article is to construct analogous transfer maps E∗​(Bπ1​M)→E∗−k​(Bπ1​N) for different generalized homology theories E and suitable submanifold embeddings. The design criterion is that it is compatible with the transfer E∗​(M)→E∗−k​(N) induced by the inclusion N⊂M for a chosen orientation on the normal bundle. Under varying restrictions on homotopy groups and the normal bundle, we construct transfers in the following cases in particular: In ordinary homology, it works for all codimensions. This slightly generalizes a result of Engel and simplifies his proof. In complex K-homology, we achieve it for k≤3. For k≤2, we have a transfer on the equivariant KO-homology of the classifying space for proper actions.
DOI : 10.4171/dm/833
Classification : 19K35, 55N20, 55N22, 55N91
Mots-clés : group cohomology, transfer maps, geneneralized cohomology, codimension 2 submanifold obstruction to positive scalar curvature
@article{10_4171_dm_833,
     author = {Martin Nitsche and Rudolf Zeidler and Thomas Schick},
     title = {Transfer maps in generalized group homology via submanifolds},
     journal = {Documenta mathematica},
     pages = {947--979},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/833},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/833/}
}
TY  - JOUR
AU  - Martin Nitsche
AU  - Rudolf Zeidler
AU  - Thomas Schick
TI  - Transfer maps in generalized group homology via submanifolds
JO  - Documenta mathematica
PY  - 2021
SP  - 947
EP  - 979
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/833/
DO  - 10.4171/dm/833
ID  - 10_4171_dm_833
ER  - 
%0 Journal Article
%A Martin Nitsche
%A Rudolf Zeidler
%A Thomas Schick
%T Transfer maps in generalized group homology via submanifolds
%J Documenta mathematica
%D 2021
%P 947-979
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/833/
%R 10.4171/dm/833
%F 10_4171_dm_833
Martin Nitsche; Rudolf Zeidler; Thomas Schick. Transfer maps in generalized group homology via submanifolds. Documenta mathematica, Tome 26 (2021), pp. 947-979. doi: 10.4171/dm/833

Cité par Sources :