The adic tame site
Documenta mathematica, Tome 26 (2021), pp. 873-945
Cet article a éte moissonné depuis la source EMS Press
For every adic space X we construct a site Xt, the tame site of X. For a scheme X over a base scheme S we obtain a tame site by associating with X/S an adic space Spa(X,S) and considering the tame site Spa(X,S)t. We examine the connection of the cohomology of the tame site with étale cohomology and compare its fundamental group with the conventional tame fundamental group. Finally, assuming resolution of singularities, for a regular scheme X over a base scheme S of characteristic p>0 we prove a cohomological purity theorem for the constant sheaf Z/pZ on Spa(X,S)t. As a corollary we obtain homotopy invariance for the tame cohomology groups of Spa(X,S).
Classification :
14F20, 14F35, 14G17, 14G22
Mots-clés : positive characteristic, tame ramification, Grothendieck topology
Mots-clés : positive characteristic, tame ramification, Grothendieck topology
@article{10_4171_dm_832,
author = {Katharina H\"ubner},
title = {The adic tame site},
journal = {Documenta mathematica},
pages = {873--945},
year = {2021},
volume = {26},
doi = {10.4171/dm/832},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/832/}
}
Katharina Hübner. The adic tame site. Documenta mathematica, Tome 26 (2021), pp. 873-945. doi: 10.4171/dm/832
Cité par Sources :