A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus
Documenta mathematica, Tome 26 (2021), pp. 675-711 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

In the present paper, we first construct a pairing on the space of analytic distributions associated with GSp2g​. By considering the overconvergent parabolic cohomology groups and following the work of Johansson-Newton, we construct the cuspidal eigenvariety for GSp2g​. The pairing on the analytic distributions then induces a pairing on some coherent sheaves of the cuspidal eigenvariety. As an application, we follow the strategy of Bellaïche to study the ramification locus of the cuspidal eigenvariety over the corresponding weight space.
DOI : 10.4171/dm/826
Classification : 11F46, 11F67, 11F85, 11G18
Mots-clés : eigenvarieties, p-adic L-functions, overconvergent cohomology
@article{10_4171_dm_826,
     author = {Ju-Feng Wu},
     title = {A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus},
     journal = {Documenta mathematica},
     pages = {675--711},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/826},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/826/}
}
TY  - JOUR
AU  - Ju-Feng Wu
TI  - A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus
JO  - Documenta mathematica
PY  - 2021
SP  - 675
EP  - 711
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/826/
DO  - 10.4171/dm/826
ID  - 10_4171_dm_826
ER  - 
%0 Journal Article
%A Ju-Feng Wu
%T A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus
%J Documenta mathematica
%D 2021
%P 675-711
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/826/
%R 10.4171/dm/826
%F 10_4171_dm_826
Ju-Feng Wu. A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus. Documenta mathematica, Tome 26 (2021), pp. 675-711. doi: 10.4171/dm/826

Cité par Sources :