A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus
Documenta mathematica, Tome 26 (2021), pp. 675-711
Cet article a éte moissonné depuis la source EMS Press
In the present paper, we first construct a pairing on the space of analytic distributions associated with GSp2g. By considering the overconvergent parabolic cohomology groups and following the work of Johansson-Newton, we construct the cuspidal eigenvariety for GSp2g. The pairing on the analytic distributions then induces a pairing on some coherent sheaves of the cuspidal eigenvariety. As an application, we follow the strategy of Bellaïche to study the ramification locus of the cuspidal eigenvariety over the corresponding weight space.
Classification :
11F46, 11F67, 11F85, 11G18
Mots-clés : eigenvarieties, p-adic L-functions, overconvergent cohomology
Mots-clés : eigenvarieties, p-adic L-functions, overconvergent cohomology
@article{10_4171_dm_826,
author = {Ju-Feng Wu},
title = {A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus},
journal = {Documenta mathematica},
pages = {675--711},
year = {2021},
volume = {26},
doi = {10.4171/dm/826},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/826/}
}
Ju-Feng Wu. A pairing on the cuspidal eigenvariety for $\text{GSp}_{2g}$ and the ramification locus. Documenta mathematica, Tome 26 (2021), pp. 675-711. doi: 10.4171/dm/826
Cité par Sources :