Torsors of isotropic reductive groups over Laurent polynomials
Documenta mathematica, Tome 26 (2021), pp. 661-673 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Let k be a field of characteristic 0. Let G be a reductive group over the ring of Laurent polynomials R=k[x1±1​,...,xn±1​]. We prove that G is isotropic over R if and only if it is isotropic over the field of fractions k(x1​,...,xn​) of R, and if this is the case, then the natural map Heˊt1​(R,G)→Heˊt1​(k(x1​,...,xn​),G) has trivial kernel and G is loop reductive. In particular, we settle in positive the conjecture of V. Chernousov, P. Gille, and A. Pianzola that HZar1​(R,G)=∗ for such groups G. We also deduce that if G is a reductive group over R of isotropic rank ≥2, then the natural map of non-stable K1​-functors K1G​(R)→K1G​(k((x1​))...((xn​))) is injective, and an isomorphism if G is moreover semisimple.
DOI : 10.4171/dm/825
Classification : 11E72, 14F20, 17B67, 19B28, 20G35
Mots-clés : isotropic reductive group, loop reductive group, Laurent polynomials, G-torsor, non-stable K1​-functor, Whitehead group
@article{10_4171_dm_825,
     author = {Anastasia Stavrova},
     title = {Torsors of isotropic reductive groups over {Laurent} polynomials},
     journal = {Documenta mathematica},
     pages = {661--673},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/825},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/825/}
}
TY  - JOUR
AU  - Anastasia Stavrova
TI  - Torsors of isotropic reductive groups over Laurent polynomials
JO  - Documenta mathematica
PY  - 2021
SP  - 661
EP  - 673
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/825/
DO  - 10.4171/dm/825
ID  - 10_4171_dm_825
ER  - 
%0 Journal Article
%A Anastasia Stavrova
%T Torsors of isotropic reductive groups over Laurent polynomials
%J Documenta mathematica
%D 2021
%P 661-673
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/825/
%R 10.4171/dm/825
%F 10_4171_dm_825
Anastasia Stavrova. Torsors of isotropic reductive groups over Laurent polynomials. Documenta mathematica, Tome 26 (2021), pp. 661-673. doi: 10.4171/dm/825

Cité par Sources :