Morel homotopy modules and Milnor-Witt cycle modules
Documenta mathematica, Tome 26 (2021), pp. 617-659 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We study the cohomology theory and the canonical Milnor-Witt cycle module associated to a motivic spectrum. We prove that the heart of Morel-Voevodsky stable homotopy category over a perfect field (equipped with its homotopy t-structure) is equivalent to the category of Milnor-Witt cycle modules, thus generalising Déglise's thesis. As a corollary, we recover a theorem of Ananyevskiy and Neshitov, and we prove that the Milnor-Witt K-theory groups are birational invariants.
DOI : 10.4171/dm/824
Classification : 11E81, 14C17, 14C35
Mots-clés : Chow-Witt groups, birational invariants, cycle modules, Milnor-Witt K-theory, A1-homotopy
@article{10_4171_dm_824,
     author = {Niels Feld},
     title = {Morel homotopy modules and {Milnor-Witt} cycle modules},
     journal = {Documenta mathematica},
     pages = {617--659},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/824},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/824/}
}
TY  - JOUR
AU  - Niels Feld
TI  - Morel homotopy modules and Milnor-Witt cycle modules
JO  - Documenta mathematica
PY  - 2021
SP  - 617
EP  - 659
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/824/
DO  - 10.4171/dm/824
ID  - 10_4171_dm_824
ER  - 
%0 Journal Article
%A Niels Feld
%T Morel homotopy modules and Milnor-Witt cycle modules
%J Documenta mathematica
%D 2021
%P 617-659
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/824/
%R 10.4171/dm/824
%F 10_4171_dm_824
Niels Feld. Morel homotopy modules and Milnor-Witt cycle modules. Documenta mathematica, Tome 26 (2021), pp. 617-659. doi: 10.4171/dm/824

Cité par Sources :