Morel homotopy modules and Milnor-Witt cycle modules
Documenta mathematica, Tome 26 (2021), pp. 617-659
Cet article a éte moissonné depuis la source EMS Press
We study the cohomology theory and the canonical Milnor-Witt cycle module associated to a motivic spectrum. We prove that the heart of Morel-Voevodsky stable homotopy category over a perfect field (equipped with its homotopy t-structure) is equivalent to the category of Milnor-Witt cycle modules, thus generalising Déglise's thesis. As a corollary, we recover a theorem of Ananyevskiy and Neshitov, and we prove that the Milnor-Witt K-theory groups are birational invariants.
Classification :
11E81, 14C17, 14C35
Mots-clés : Chow-Witt groups, birational invariants, cycle modules, Milnor-Witt K-theory, A1-homotopy
Mots-clés : Chow-Witt groups, birational invariants, cycle modules, Milnor-Witt K-theory, A1-homotopy
@article{10_4171_dm_824,
author = {Niels Feld},
title = {Morel homotopy modules and {Milnor-Witt} cycle modules},
journal = {Documenta mathematica},
pages = {617--659},
year = {2021},
volume = {26},
doi = {10.4171/dm/824},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/824/}
}
Niels Feld. Morel homotopy modules and Milnor-Witt cycle modules. Documenta mathematica, Tome 26 (2021), pp. 617-659. doi: 10.4171/dm/824
Cité par Sources :