Motivic Mahowald invariants over general base fields
Documenta mathematica, Tome 26 (2021), pp. 561-582
Cet article a éte moissonné depuis la source EMS Press
The motivic Mahowald invariant was introduced in [J. D. Quigley, Algebr. Geom. Topol. 19, No. 5, 2485–2534 (2019; Zbl 1436.55016)] and [J. D. Quigley, J. Topol. 14, No. 2, 369–418 (2021; Zbl 07381853)] to study periodicity in the C- and R-motivic stable stems. In this paper, we define the motivic Mahowald invariant over any field F of characteristic not two and use it to study periodicity in the F-motivic stable stems. In particular, we construct lifts of some of Adams' classical v1-periodic families [J. F. Adams, Topology 5, 21–71 (1966; Zbl 0145.19902)] and identify them as the motivic Mahowald invariants of powers of 2+ρη.
Classification :
14F42, 55P42, 55Q45, 55Q51
Mots-clés : motivic Mahowald invariant, root invariant, motivic periodicity, motivic stable stems
Mots-clés : motivic Mahowald invariant, root invariant, motivic periodicity, motivic stable stems
@article{10_4171_dm_822,
author = {J. D. Quigley},
title = {Motivic {Mahowald} invariants over general base fields},
journal = {Documenta mathematica},
pages = {561--582},
year = {2021},
volume = {26},
doi = {10.4171/dm/822},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/822/}
}
J. D. Quigley. Motivic Mahowald invariants over general base fields. Documenta mathematica, Tome 26 (2021), pp. 561-582. doi: 10.4171/dm/822
Cité par Sources :