On lower bounds of the dimensions of multizeta values in positive characteristic
Documenta mathematica, Tome 26 (2021), pp. 537-559 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

In this paper, we study the linear independence of special values, including the positive characteristic analogue of multizeta values, alternating multizeta values and multiple polylogarithms, at algebraic points. Consequently, we establish linearly independent sets of these values with the same weight indices and a lower bound on the dimension of the space generated by depth r>2 multizeta values of the same weight in positive characteristic.
DOI : 10.4171/dm/821
Classification : 11J72, 11J93, 11M38
Mots-clés : multizeta values, t-module, t-motive
@article{10_4171_dm_821,
     author = {Yen-Tsung Chen and Ryotaro Harada},
     title = {On lower bounds of the dimensions of multizeta values in positive characteristic},
     journal = {Documenta mathematica},
     pages = {537--559},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/821},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/821/}
}
TY  - JOUR
AU  - Yen-Tsung Chen
AU  - Ryotaro Harada
TI  - On lower bounds of the dimensions of multizeta values in positive characteristic
JO  - Documenta mathematica
PY  - 2021
SP  - 537
EP  - 559
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/821/
DO  - 10.4171/dm/821
ID  - 10_4171_dm_821
ER  - 
%0 Journal Article
%A Yen-Tsung Chen
%A Ryotaro Harada
%T On lower bounds of the dimensions of multizeta values in positive characteristic
%J Documenta mathematica
%D 2021
%P 537-559
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/821/
%R 10.4171/dm/821
%F 10_4171_dm_821
Yen-Tsung Chen; Ryotaro Harada. On lower bounds of the dimensions of multizeta values in positive characteristic. Documenta mathematica, Tome 26 (2021), pp. 537-559. doi: 10.4171/dm/821

Cité par Sources :