On lower bounds of the dimensions of multizeta values in positive characteristic
Documenta mathematica, Tome 26 (2021), pp. 537-559
Cet article a éte moissonné depuis la source EMS Press
In this paper, we study the linear independence of special values, including the positive characteristic analogue of multizeta values, alternating multizeta values and multiple polylogarithms, at algebraic points. Consequently, we establish linearly independent sets of these values with the same weight indices and a lower bound on the dimension of the space generated by depth r>2 multizeta values of the same weight in positive characteristic.
Classification :
11J72, 11J93, 11M38
Mots-clés : multizeta values, t-module, t-motive
Mots-clés : multizeta values, t-module, t-motive
@article{10_4171_dm_821,
author = {Yen-Tsung Chen and Ryotaro Harada},
title = {On lower bounds of the dimensions of multizeta values in positive characteristic},
journal = {Documenta mathematica},
pages = {537--559},
year = {2021},
volume = {26},
doi = {10.4171/dm/821},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/821/}
}
TY - JOUR AU - Yen-Tsung Chen AU - Ryotaro Harada TI - On lower bounds of the dimensions of multizeta values in positive characteristic JO - Documenta mathematica PY - 2021 SP - 537 EP - 559 VL - 26 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/821/ DO - 10.4171/dm/821 ID - 10_4171_dm_821 ER -
Yen-Tsung Chen; Ryotaro Harada. On lower bounds of the dimensions of multizeta values in positive characteristic. Documenta mathematica, Tome 26 (2021), pp. 537-559. doi: 10.4171/dm/821
Cité par Sources :