Hecke $L$-functions and Fourier coefficients of covering Eisenstein series
Documenta mathematica, Tome 26 (2021), pp. 465-522 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We consider in this paper covering groups and Fourier coefficients of Eisenstein series for induced representations from certain distinguished theta representations. It is shown that one has global factorization of such Fourier coefficients, and the local unramified Whittaker function at the identity can be computed from the local scattering matrices. For a special family of covering groups of the general linear groups, we show that the Fourier coefficients of such Eisenstein series are reciprocals of Hecke L-functions, which recovers an earlier result by Suzuki for Kazhdan-Patterson covering groups. We also consider covers of the symplectic group and carry out a detailed analysis in the rank-two case.
DOI : 10.4171/dm/819
Classification : 11F70, 22E50
Mots-clés : Eisenstein series, covering group, theta representation, Whittaker function, Fourier coefficients, Hecke L-function
@article{10_4171_dm_819,
     author = {Fan Gao},
     title = {Hecke $L$-functions and {Fourier} coefficients of covering {Eisenstein} series},
     journal = {Documenta mathematica},
     pages = {465--522},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/819},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/819/}
}
TY  - JOUR
AU  - Fan Gao
TI  - Hecke $L$-functions and Fourier coefficients of covering Eisenstein series
JO  - Documenta mathematica
PY  - 2021
SP  - 465
EP  - 522
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/819/
DO  - 10.4171/dm/819
ID  - 10_4171_dm_819
ER  - 
%0 Journal Article
%A Fan Gao
%T Hecke $L$-functions and Fourier coefficients of covering Eisenstein series
%J Documenta mathematica
%D 2021
%P 465-522
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/819/
%R 10.4171/dm/819
%F 10_4171_dm_819
Fan Gao. Hecke $L$-functions and Fourier coefficients of covering Eisenstein series. Documenta mathematica, Tome 26 (2021), pp. 465-522. doi: 10.4171/dm/819

Cité par Sources :