Complete intersections of quadrics and complete intersections on Segre varieties with common specializations
Documenta mathematica, Tome 26 (2021), pp. 439-464
Cet article a éte moissonné depuis la source EMS Press
We investigate whether surfaces that are complete intersections of quadrics and complete intersection surfaces in the Segre embedded product P1×Pk↪P2k+1 can belong to the same Hilbert scheme. For k=2 there is a classical example; it comes from K3 surfaces in projective 5-space that degenerate into a hypersurface on the Segre threefold. We show that for k≥3 there is only one more example. It turns out that its (connected) Hilbert scheme has at least two irreducible components. We investigate the corresponding local moduli problem.
Classification :
14C05, 14J10, 14J25
Mots-clés : complete intersections of quadrics, Segre varieties, Hilbert schemes, local moduli
Mots-clés : complete intersections of quadrics, Segre varieties, Hilbert schemes, local moduli
@article{10_4171_dm_818,
author = {Hans Sterk and Chris Peters},
title = {Complete intersections of quadrics and complete intersections on {Segre} varieties with common specializations},
journal = {Documenta mathematica},
pages = {439--464},
year = {2021},
volume = {26},
doi = {10.4171/dm/818},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/818/}
}
TY - JOUR AU - Hans Sterk AU - Chris Peters TI - Complete intersections of quadrics and complete intersections on Segre varieties with common specializations JO - Documenta mathematica PY - 2021 SP - 439 EP - 464 VL - 26 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/818/ DO - 10.4171/dm/818 ID - 10_4171_dm_818 ER -
%0 Journal Article %A Hans Sterk %A Chris Peters %T Complete intersections of quadrics and complete intersections on Segre varieties with common specializations %J Documenta mathematica %D 2021 %P 439-464 %V 26 %U http://geodesic.mathdoc.fr/articles/10.4171/dm/818/ %R 10.4171/dm/818 %F 10_4171_dm_818
Hans Sterk; Chris Peters. Complete intersections of quadrics and complete intersections on Segre varieties with common specializations. Documenta mathematica, Tome 26 (2021), pp. 439-464. doi: 10.4171/dm/818
Cité par Sources :