Complete intersections of quadrics and complete intersections on Segre varieties with common specializations
Documenta mathematica, Tome 26 (2021), pp. 439-464 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We investigate whether surfaces that are complete intersections of quadrics and complete intersection surfaces in the Segre embedded product P1×Pk↪P2k+1 can belong to the same Hilbert scheme. For k=2 there is a classical example; it comes from K3 surfaces in projective 5-space that degenerate into a hypersurface on the Segre threefold. We show that for k≥3 there is only one more example. It turns out that its (connected) Hilbert scheme has at least two irreducible components. We investigate the corresponding local moduli problem.
DOI : 10.4171/dm/818
Classification : 14C05, 14J10, 14J25
Mots-clés : complete intersections of quadrics, Segre varieties, Hilbert schemes, local moduli
@article{10_4171_dm_818,
     author = {Hans Sterk and Chris Peters},
     title = {Complete intersections of quadrics and complete intersections on {Segre} varieties with common specializations},
     journal = {Documenta mathematica},
     pages = {439--464},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/818},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/818/}
}
TY  - JOUR
AU  - Hans Sterk
AU  - Chris Peters
TI  - Complete intersections of quadrics and complete intersections on Segre varieties with common specializations
JO  - Documenta mathematica
PY  - 2021
SP  - 439
EP  - 464
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/818/
DO  - 10.4171/dm/818
ID  - 10_4171_dm_818
ER  - 
%0 Journal Article
%A Hans Sterk
%A Chris Peters
%T Complete intersections of quadrics and complete intersections on Segre varieties with common specializations
%J Documenta mathematica
%D 2021
%P 439-464
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/818/
%R 10.4171/dm/818
%F 10_4171_dm_818
Hans Sterk; Chris Peters. Complete intersections of quadrics and complete intersections on Segre varieties with common specializations. Documenta mathematica, Tome 26 (2021), pp. 439-464. doi: 10.4171/dm/818

Cité par Sources :