Reduced Whitehead groups of prime exponent algebras over $p$-adic curves
Documenta mathematica, Tome 26 (2021), pp. 337-413
Cet article a éte moissonné depuis la source EMS Press
Let F be the function field of a curve over a p-adic field. Let D/F be a central division algebra of prime exponent l which is different from p. Assume that F contains a primitive l2th root of unity. Then the abstract group SK1(D):=[D∗,D∗]SL1(D) is trivial.
Classification :
11R58, 14H05, 14H25, 16K20, 16K50
Mots-clés : patching, reduced Whitehead groups, Tannaka-Artin problem, SK1, function fields of p-adic curves
Mots-clés : patching, reduced Whitehead groups, Tannaka-Artin problem, SK1, function fields of p-adic curves
@article{10_4171_dm_816,
author = {Nivedita Bhaskhar},
title = {Reduced {Whitehead} groups of prime exponent algebras over $p$-adic curves},
journal = {Documenta mathematica},
pages = {337--413},
year = {2021},
volume = {26},
doi = {10.4171/dm/816},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/816/}
}
Nivedita Bhaskhar. Reduced Whitehead groups of prime exponent algebras over $p$-adic curves. Documenta mathematica, Tome 26 (2021), pp. 337-413. doi: 10.4171/dm/816
Cité par Sources :