Semistable reduction of modular curves associated with maximal subgroups in prime level
Documenta mathematica, Tome 26 (2021), pp. 231-269 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

We complete the description of semistable models for modular curves associated with maximal subgroups of GL2​(Fp​) (for p any prime, p>5). That is, in the new cases of non-split Cartan modular curves and exceptional subgroups, we identify the irreducible components and singularities of the reduction modp, and the complete local rings at the singularities. We review the case of split Cartan modular curves. This description suffices for computing the group of connected components of the fibre at p of the Néron model of the Jacobian.
DOI : 10.4171/dm/814
Classification : 11G18, 11G20, 14G35
Mots-clés : modular curves, maximal prime level subgroups, non-split Cartan, semistable models
@article{10_4171_dm_814,
     author = {Bas Edixhoven and Pierre Parent},
     title = {Semistable reduction of modular curves associated with maximal subgroups in prime level},
     journal = {Documenta mathematica},
     pages = {231--269},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/814},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/814/}
}
TY  - JOUR
AU  - Bas Edixhoven
AU  - Pierre Parent
TI  - Semistable reduction of modular curves associated with maximal subgroups in prime level
JO  - Documenta mathematica
PY  - 2021
SP  - 231
EP  - 269
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/814/
DO  - 10.4171/dm/814
ID  - 10_4171_dm_814
ER  - 
%0 Journal Article
%A Bas Edixhoven
%A Pierre Parent
%T Semistable reduction of modular curves associated with maximal subgroups in prime level
%J Documenta mathematica
%D 2021
%P 231-269
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/814/
%R 10.4171/dm/814
%F 10_4171_dm_814
Bas Edixhoven; Pierre Parent. Semistable reduction of modular curves associated with maximal subgroups in prime level. Documenta mathematica, Tome 26 (2021), pp. 231-269. doi: 10.4171/dm/814

Cité par Sources :