Semistable reduction of modular curves associated with maximal subgroups in prime level
Documenta mathematica, Tome 26 (2021), pp. 231-269
Cet article a éte moissonné depuis la source EMS Press
We complete the description of semistable models for modular curves associated with maximal subgroups of GL2(Fp) (for p any prime, p>5). That is, in the new cases of non-split Cartan modular curves and exceptional subgroups, we identify the irreducible components and singularities of the reduction modp, and the complete local rings at the singularities. We review the case of split Cartan modular curves. This description suffices for computing the group of connected components of the fibre at p of the Néron model of the Jacobian.
Classification :
11G18, 11G20, 14G35
Mots-clés : modular curves, maximal prime level subgroups, non-split Cartan, semistable models
Mots-clés : modular curves, maximal prime level subgroups, non-split Cartan, semistable models
@article{10_4171_dm_814,
author = {Bas Edixhoven and Pierre Parent},
title = {Semistable reduction of modular curves associated with maximal subgroups in prime level},
journal = {Documenta mathematica},
pages = {231--269},
year = {2021},
volume = {26},
doi = {10.4171/dm/814},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/814/}
}
TY - JOUR AU - Bas Edixhoven AU - Pierre Parent TI - Semistable reduction of modular curves associated with maximal subgroups in prime level JO - Documenta mathematica PY - 2021 SP - 231 EP - 269 VL - 26 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/814/ DO - 10.4171/dm/814 ID - 10_4171_dm_814 ER -
Bas Edixhoven; Pierre Parent. Semistable reduction of modular curves associated with maximal subgroups in prime level. Documenta mathematica, Tome 26 (2021), pp. 231-269. doi: 10.4171/dm/814
Cité par Sources :