$n$-quasi-abelian categories vs $n$-tilting torsion pairs
Documenta mathematica, Tome 26 (2021), pp. 149-197 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

It is a well established fact that the notions of quasi-abelian categories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a "derived" category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander's Formula. Thirdly, we apply our results to Bridgeland's theory of perverse coherent sheaves for flop contractions. In Bridgeland's work, the relative dimension 1 assumption guaranteed that f∗​-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y). We generalize this theorem to relative dimension 2.
DOI : 10.4171/dm/812
Classification : 14F08, 16S90, 18E05, 18E20, 18E40
Mots-clés : perverse coherent sheaves, torsion pair, quasi-abelian category, t-structures, tilting objects, Bondal-Orlov conjecture
@article{10_4171_dm_812,
     author = {Luisa Fiorot},
     title = {$n$-quasi-abelian categories vs $n$-tilting torsion pairs},
     journal = {Documenta mathematica},
     pages = {149--197},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/812},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/812/}
}
TY  - JOUR
AU  - Luisa Fiorot
TI  - $n$-quasi-abelian categories vs $n$-tilting torsion pairs
JO  - Documenta mathematica
PY  - 2021
SP  - 149
EP  - 197
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/812/
DO  - 10.4171/dm/812
ID  - 10_4171_dm_812
ER  - 
%0 Journal Article
%A Luisa Fiorot
%T $n$-quasi-abelian categories vs $n$-tilting torsion pairs
%J Documenta mathematica
%D 2021
%P 149-197
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/812/
%R 10.4171/dm/812
%F 10_4171_dm_812
Luisa Fiorot. $n$-quasi-abelian categories vs $n$-tilting torsion pairs. Documenta mathematica, Tome 26 (2021), pp. 149-197. doi: 10.4171/dm/812

Cité par Sources :