Cores of Ariki-Koike algebras
Documenta mathematica, Tome 26 (2021), pp. 103-124
Cet article a éte moissonné depuis la source EMS Press
We study a natural generalization of the notion of cores for l-partitions attached with a multicharge s∈Zl: the (e,s)-cores. We rely them both to the combinatorics and the notion of weight defined by Fayers. Next we study applications in the context of the block theory for Ariki-Koike algebras.
Classification :
20C08, 20C20
Mots-clés : block, Hecke algebras, decomposition matrix
Mots-clés : block, Hecke algebras, decomposition matrix
@article{10_4171_dm_810,
author = {Nicolas Jacon and C\'edric Lecouvey},
title = {Cores of {Ariki-Koike} algebras},
journal = {Documenta mathematica},
pages = {103--124},
year = {2021},
volume = {26},
doi = {10.4171/dm/810},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/810/}
}
Nicolas Jacon; Cédric Lecouvey. Cores of Ariki-Koike algebras. Documenta mathematica, Tome 26 (2021), pp. 103-124. doi: 10.4171/dm/810
Cité par Sources :