Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms
Documenta mathematica, Tome 26 (2021), pp. 1-63
Cet article a éte moissonné depuis la source EMS Press
Let f be a normalized cuspidal eigen-newform of level coprime to p with ap(f)=0. We formulate both integral signed Iwasawa main conjectures and analytic Iwasawa main conjectures attached to the symmetric square motive of f twisted by an auxiliary Dirichlet character. We show that the Beilinson-Flach elements attached to the symmetric square motive factorize into integral signed Beilinson-Flach elements, giving evidence towards the existence of a rank-two Euler system predicted by Perrin-Riou. We use these integral elements to prove one inclusion in the integral and analytic Iwasawa main conjectures.
Classification :
11F11, 11R23
Mots-clés : Iwasawa theory, Euler systems, elliptic modular forms, symmetric square representations, non-ordinary primes, Beilinson-Flach classes
Mots-clés : Iwasawa theory, Euler systems, elliptic modular forms, symmetric square representations, non-ordinary primes, Beilinson-Flach classes
@article{10_4171_dm_808,
author = {Antonio Lei and Guhan Venkat and Kazim B\"uy\"ukboduk},
title = {Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms},
journal = {Documenta mathematica},
pages = {1--63},
year = {2021},
volume = {26},
doi = {10.4171/dm/808},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/808/}
}
TY - JOUR AU - Antonio Lei AU - Guhan Venkat AU - Kazim Büyükboduk TI - Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms JO - Documenta mathematica PY - 2021 SP - 1 EP - 63 VL - 26 UR - http://geodesic.mathdoc.fr/articles/10.4171/dm/808/ DO - 10.4171/dm/808 ID - 10_4171_dm_808 ER -
Antonio Lei; Guhan Venkat; Kazim Büyükboduk. Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms. Documenta mathematica, Tome 26 (2021), pp. 1-63. doi: 10.4171/dm/808
Cité par Sources :