Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms
Documenta mathematica, Tome 26 (2021), pp. 1-63 Cet article a éte moissonné depuis la source EMS Press

Voir la notice de l'article

Let f be a normalized cuspidal eigen-newform of level coprime to p with ap​(f)=0. We formulate both integral signed Iwasawa main conjectures and analytic Iwasawa main conjectures attached to the symmetric square motive of f twisted by an auxiliary Dirichlet character. We show that the Beilinson-Flach elements attached to the symmetric square motive factorize into integral signed Beilinson-Flach elements, giving evidence towards the existence of a rank-two Euler system predicted by Perrin-Riou. We use these integral elements to prove one inclusion in the integral and analytic Iwasawa main conjectures.
DOI : 10.4171/dm/808
Classification : 11F11, 11R23
Mots-clés : Iwasawa theory, Euler systems, elliptic modular forms, symmetric square representations, non-ordinary primes, Beilinson-Flach classes
@article{10_4171_dm_808,
     author = {Antonio Lei and Guhan Venkat and Kazim B\"uy\"ukboduk},
     title = {Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms},
     journal = {Documenta mathematica},
     pages = {1--63},
     year = {2021},
     volume = {26},
     doi = {10.4171/dm/808},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/808/}
}
TY  - JOUR
AU  - Antonio Lei
AU  - Guhan Venkat
AU  - Kazim Büyükboduk
TI  - Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms
JO  - Documenta mathematica
PY  - 2021
SP  - 1
EP  - 63
VL  - 26
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/808/
DO  - 10.4171/dm/808
ID  - 10_4171_dm_808
ER  - 
%0 Journal Article
%A Antonio Lei
%A Guhan Venkat
%A Kazim Büyükboduk
%T Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms
%J Documenta mathematica
%D 2021
%P 1-63
%V 26
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/808/
%R 10.4171/dm/808
%F 10_4171_dm_808
Antonio Lei; Guhan Venkat; Kazim Büyükboduk. Iwasawa theory for symmetric squares of non-$p$-ordinary eigenforms. Documenta mathematica, Tome 26 (2021), pp. 1-63. doi: 10.4171/dm/808

Cité par Sources :