Distortion for multifactor bimodules and representations of multifusion categories
Documenta mathematica, Tome 30 (2025) no. 3, pp. 497-586

Voir la notice de l'article provenant de la source EMS Press

We call a von Neumann algebra with finite-dimensional center a multifactor. We introduce an invariant of bimodules over II1​ multifactors that we call modular distortion, and use it to formulate two classification results. We first classify finite depth finite index connected hyperfinite II1​ multifactor inclusions A⊂B in terms of the standard invariant (a unitary planar algebra), together with the restriction to A of the unique Markov trace on B. The latter determines the modular distortion of the associated bimodule. Three crucial ingredients are Popa’s uniqueness theorem for such inclusions which are also homogeneous, for which the standard invariant is a complete invariant, a generalized version of the Ocneanu Compactness Theorem, and the notion of Morita equivalence for inclusions. Second, we classify fully faithful representations of unitary multifusion categories into bimodules over hyperfinite II1​ multifactors in terms of the modular distortion. Every possible distortion arises from a representation, and we characterize the proper subset of distortions that arise from connected II1​ multifactor inclusions.
DOI : 10.4171/dm/1011
Classification : 46L37, 18M20, 18M30, 18N10
Mots-clés : subfactors, planar algebras, modular distortion, unitary fusion categories
@article{10_4171_dm_1011,
     author = {Marcel Bischoff and Ian Charlesworth and Samuel Evington and Luca Giorgetti and David Penneys},
     title = {Distortion for multifactor bimodules and representations of multifusion categories},
     journal = {Documenta mathematica},
     pages = {497--586},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2025},
     doi = {10.4171/dm/1011},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/1011/}
}
TY  - JOUR
AU  - Marcel Bischoff
AU  - Ian Charlesworth
AU  - Samuel Evington
AU  - Luca Giorgetti
AU  - David Penneys
TI  - Distortion for multifactor bimodules and representations of multifusion categories
JO  - Documenta mathematica
PY  - 2025
SP  - 497
EP  - 586
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/1011/
DO  - 10.4171/dm/1011
ID  - 10_4171_dm_1011
ER  - 
%0 Journal Article
%A Marcel Bischoff
%A Ian Charlesworth
%A Samuel Evington
%A Luca Giorgetti
%A David Penneys
%T Distortion for multifactor bimodules and representations of multifusion categories
%J Documenta mathematica
%D 2025
%P 497-586
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/1011/
%R 10.4171/dm/1011
%F 10_4171_dm_1011
Marcel Bischoff; Ian Charlesworth; Samuel Evington; Luca Giorgetti; David Penneys. Distortion for multifactor bimodules and representations of multifusion categories. Documenta mathematica, Tome 30 (2025) no. 3, pp. 497-586. doi: 10.4171/dm/1011

Cité par Sources :