Prismatic $F$-crystals and Lubin–Tate $(\varphi_{q},\Gamma)$-modules
Documenta mathematica, Tome 30 (2025) no. 4, pp. 787-838
Voir la notice de l'article provenant de la source EMS Press
Let L/Qp be a finite extension. We introduce L-typical prisms, a mild generalization of prisms. Following ideas of Bhatt, Scholze, and Wu, we show that certain vector bundles, called Laurent F-crystals, on the L-typical prismatic site of a formal scheme X over SpfOL are equivalent to OL-linear local systems on the generic fiber Xη. We also give comparison theorems for computing the étale cohomology of a local system in terms of the cohomology of its corresponding Laurent F-crystal. In the case X=SpfOK for K/L a p-adic field, we show that this recovers the Kisin–Ren equivalence between Lubin–Tate (φq,Γ)-modules and OL-linear representations of GK, as well as the results of Kupferer and Venjakob for computing Galois cohomology in terms of Herr complexes of (φq,Γ)-modules. We can thus regard Laurent F-crystals on the L-typical prismatic site as providing a suitable notion of relative (φq,Γ)-modules.
Classification :
14F30, 11F85, 11S31, 11S20
Mots-clés : p-adic Hodge theory, prismatic cohomology, (φ,Γ)-modules, Lubin–Tate formal groups
Mots-clés : p-adic Hodge theory, prismatic cohomology, (φ,Γ)-modules, Lubin–Tate formal groups
@article{10_4171_dm_1009,
author = {Samuel Marks},
title = {Prismatic $F$-crystals and {Lubin{\textendash}Tate} $(\varphi_{q},\Gamma)$-modules},
journal = {Documenta mathematica},
pages = {787--838},
publisher = {mathdoc},
volume = {30},
number = {4},
year = {2025},
doi = {10.4171/dm/1009},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/1009/}
}
Samuel Marks. Prismatic $F$-crystals and Lubin–Tate $(\varphi_{q},\Gamma)$-modules. Documenta mathematica, Tome 30 (2025) no. 4, pp. 787-838. doi: 10.4171/dm/1009
Cité par Sources :