Weighted homomorphisms between $\mathrm{C}^{*}$-algebras
Documenta mathematica, Tome 30 (2025) no. 3, pp. 587-610

Voir la notice de l'article provenant de la source EMS Press

We show that a bounded, linear map between C∗-algebras is a weighted ∗-homomorphism (the central compression of a ∗-homomorphism) if and only if it preserves zero-products, range-orthogonality, and domain-orthogonality. It follows that a self-adjoint, bounded, linear map is a weighted ∗-homomorphism if and only if it preserves zero-products. As an application we show that a linear map between C∗-algebras is completely positive, order zero in the sense of Winter–Zacharias if and only if it is positive and preserves zero-products.
DOI : 10.4171/dm/1008
Classification : 47B65, 47B49
Mots-clés : C∗-algebras, weighted homomorphisms, zero-products, range-orthogonality, domain-orthogonality
@article{10_4171_dm_1008,
     author = {Eusebio Gardella and Hannes Thiel},
     title = {Weighted homomorphisms between $\mathrm{C}^{*}$-algebras},
     journal = {Documenta mathematica},
     pages = {587--610},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2025},
     doi = {10.4171/dm/1008},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/1008/}
}
TY  - JOUR
AU  - Eusebio Gardella
AU  - Hannes Thiel
TI  - Weighted homomorphisms between $\mathrm{C}^{*}$-algebras
JO  - Documenta mathematica
PY  - 2025
SP  - 587
EP  - 610
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/1008/
DO  - 10.4171/dm/1008
ID  - 10_4171_dm_1008
ER  - 
%0 Journal Article
%A Eusebio Gardella
%A Hannes Thiel
%T Weighted homomorphisms between $\mathrm{C}^{*}$-algebras
%J Documenta mathematica
%D 2025
%P 587-610
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/1008/
%R 10.4171/dm/1008
%F 10_4171_dm_1008
Eusebio Gardella; Hannes Thiel. Weighted homomorphisms between $\mathrm{C}^{*}$-algebras. Documenta mathematica, Tome 30 (2025) no. 3, pp. 587-610. doi: 10.4171/dm/1008

Cité par Sources :