On $n$-ADC integral quadratic lattices over algebraic number fields
Documenta mathematica, Tome 30 (2025) no. 4, pp. 981-1022
Voir la notice de l'article provenant de la source EMS Press
In the paper, we extend the ADC property to the representation of quadratic lattices by quadratic lattices, which we define as n-ADC-ness. We explore the relationship between n-ADC-ness, n-regularity, and n-universality for integral quadratic lattices. Also, for n≥2, we give necessary and sufficient conditions for an integral quadratic lattice over arbitrary non-archimedean local fields to be n-ADC. Moreover, we show that over any algebraic number field F, an integral OF-lattice with rank n+1 is n-ADC if and only if it is OF-maximal of class number one.
Classification :
11E08, 11E12, 11E95
Mots-clés : ADC quadratic forms, universal quadratic forms, regular quadratic forms
Mots-clés : ADC quadratic forms, universal quadratic forms, regular quadratic forms
@article{10_4171_dm_1003,
author = {Zilong He},
title = {On $n${-ADC} integral quadratic lattices over algebraic number fields},
journal = {Documenta mathematica},
pages = {981--1022},
publisher = {mathdoc},
volume = {30},
number = {4},
year = {2025},
doi = {10.4171/dm/1003},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/1003/}
}
Zilong He. On $n$-ADC integral quadratic lattices over algebraic number fields. Documenta mathematica, Tome 30 (2025) no. 4, pp. 981-1022. doi: 10.4171/dm/1003
Cité par Sources :