On $n$-ADC integral quadratic lattices over algebraic number fields
Documenta mathematica, Tome 30 (2025) no. 4, pp. 981-1022
Cet article a éte moissonné depuis la source EMS Press
In the paper, we extend the ADC property to the representation of quadratic lattices by quadratic lattices, which we define as n-ADC-ness. We explore the relationship between n-ADC-ness, n-regularity, and n-universality for integral quadratic lattices. Also, for n≥2, we give necessary and sufficient conditions for an integral quadratic lattice over arbitrary non-archimedean local fields to be n-ADC. Moreover, we show that over any algebraic number field F, an integral OF-lattice with rank n+1 is n-ADC if and only if it is OF-maximal of class number one.
Classification :
11E08, 11E12, 11E95
Mots-clés : ADC quadratic forms, universal quadratic forms, regular quadratic forms
Mots-clés : ADC quadratic forms, universal quadratic forms, regular quadratic forms
@article{10_4171_dm_1003,
author = {Zilong He},
title = {On $n${-ADC} integral quadratic lattices over algebraic number fields},
journal = {Documenta mathematica},
pages = {981--1022},
year = {2025},
volume = {30},
number = {4},
doi = {10.4171/dm/1003},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/1003/}
}
Zilong He. On $n$-ADC integral quadratic lattices over algebraic number fields. Documenta mathematica, Tome 30 (2025) no. 4, pp. 981-1022. doi: 10.4171/dm/1003
Cité par Sources :