On $n$-ADC integral quadratic lattices over algebraic number fields
Documenta mathematica, Tome 30 (2025) no. 4, pp. 981-1022

Voir la notice de l'article provenant de la source EMS Press

In the paper, we extend the ADC property to the representation of quadratic lattices by quadratic lattices, which we define as n-ADC-ness. We explore the relationship between n-ADC-ness, n-regularity, and n-universality for integral quadratic lattices. Also, for n≥2, we give necessary and sufficient conditions for an integral quadratic lattice over arbitrary non-archimedean local fields to be n-ADC. Moreover, we show that over any algebraic number field F, an integral OF​-lattice with rank n+1 is n-ADC if and only if it is OF​-maximal of class number one.
DOI : 10.4171/dm/1003
Classification : 11E08, 11E12, 11E95
Mots-clés : ADC quadratic forms, universal quadratic forms, regular quadratic forms
@article{10_4171_dm_1003,
     author = {Zilong He},
     title = {On $n${-ADC} integral quadratic lattices over algebraic number fields},
     journal = {Documenta mathematica},
     pages = {981--1022},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2025},
     doi = {10.4171/dm/1003},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/1003/}
}
TY  - JOUR
AU  - Zilong He
TI  - On $n$-ADC integral quadratic lattices over algebraic number fields
JO  - Documenta mathematica
PY  - 2025
SP  - 981
EP  - 1022
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/1003/
DO  - 10.4171/dm/1003
ID  - 10_4171_dm_1003
ER  - 
%0 Journal Article
%A Zilong He
%T On $n$-ADC integral quadratic lattices over algebraic number fields
%J Documenta mathematica
%D 2025
%P 981-1022
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/1003/
%R 10.4171/dm/1003
%F 10_4171_dm_1003
Zilong He. On $n$-ADC integral quadratic lattices over algebraic number fields. Documenta mathematica, Tome 30 (2025) no. 4, pp. 981-1022. doi: 10.4171/dm/1003

Cité par Sources :